The answer is 3. Photosynthesis removes carbon dioxide while respiration puts back carbon dioxide
Weight = (mass) x (gravity)
Weight = (8 x 10⁻⁴ kg) x (10 N/kg) = 0.008 Newton
Answer:
The question clearly describes the circular motion.
The circular motion equation is

The path of the particle is circular.
Explanation:
In circular motion, the radial acceleration is always towards the center and constant in magnitude. Furthermore, the velocity of the circular motion is always tangential to the circle, that is it is always perpendicular to the radius, hence the acceleration.
Answer: Productivity increases when inputs and outputs increase proportionately.
Explanation:
Productivity increases when inputs and outputs increase proportionately. Input has to be directly proportional to output to be productive. This means increase in input to a system must leads to drastic increase in the output. When the output is not balanced with the amount of input, it leads to unproductivity.
Being productive can be business wise or in terms if personal growth and development.
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B