<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ
Answer:
Step 1 should be convert atoms to moles (n). Step 2 should be convert moles (n) to mass (m).
Step 1
Use dimensional analysis to convert the number of atoms to moles.
1 mole atoms = 6.022 × 10²³ atoms
n(Ag) = 2.3 × 10²⁴ Ag atoms × (1 mol Ag/6.022 × 10²³ Ag atoms) = 3.8193 mol Ag
Step 2
Convert the moles of Ag to mass.
mass (m) = moles (n) × molar mass (M)
n(Ag) = 3.8193 mol Ag
M(Ag) = atomic weight on the periodic table in g/mol = 107.868 g Ag/mol Ag
m(Ag) = 3.8193 mol × 107.868 g/mol = 412 g Ag = 410 g Ag rounded to two significant figures
The mass of 2.3 × 10²⁴ Ag atoms is approximately 410 g.
Explanation:
Answer:
Via covalent bonds
Explanation:
Atoms in molecules are bonded together via covalent bonds. Covalent bonds are bonds that are formed by sharing of the valence electrons between two atoms.
The atoms can be of the same kind or of different kinds.
- In most molecules, the two atoms are connected by sharing of their valence electrons.
- This way, each atom can attain stability by becoming isoelectric with the nearest noble gas.
- Some molecules are monoatomic, some are polyatomic.
<h3>
Answer:</h3>
2.47 × 10^24 molecules
<h3>
Explanation:</h3>
One mole of a compound contains molecules equivalent to the Avogadro's number, 6.022 × 10^23.
That is, 1 mole of a compound = 6.022 × 10^23 molecules
Therefore,
1 mole of Na₂CO₃ = 6.022 × 10^23 molecules
Thus, we can calculate the number of molecules in 4.1 moles of Na₂CO₃
we get,
= 4.1 moles × 6.022 × 10^23 molecules
= 2.47 × 10^24 molecules
Hence, 4.1 moles of Na₂CO₃ contains 2.47 × 10^24 molecules