1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
3 years ago
14

A silver bar 0.125 meter long is subjected to a temperature change from 200 C to 100 C . What will be the length of the bar afte

r the temperature change?
A) 0.00023635 meter
B) 0.124764 meter
C) 0.00002363 meter
D) 0.0000189 meter
Physics
2 answers:
dimulka [17.4K]3 years ago
8 0
\Delta L= \alpha L_0 (T_f-T_i)

= (18 x 10^-6 /°C)(0.125 m)(100° C - 200 °C)

= -0.00225 m

New length = L + ΔL
= 1.25 m + (-0.00225 m)
= 1.248
So your answer is B.
maksim [4K]3 years ago
7 0

iiiiiii agree lol EVERYONE HAVE A GREAT DAY

You might be interested in
How would playing a game of soccer, baseball, or basketball be different if inertia didn't exist?
BigorU [14]
Inertia is what keeps everything moving, so if it didn't exist, the balls wouldn't keep going when they are kicked, or thrown.

4 0
3 years ago
What is the magnitude of the orbital velocity of the earth in m/s?
Lana71 [14]
Circumference C=2πr 
<span>C=2π(1.5x10^8)=9.42x10^8 </span>

<span>In 365 Days there are 8760hr </span>

<span>V=distance/time </span>

<span>V=(9.42x10^8)/8760=107534.2km/hr </span>
8 0
3 years ago
HELP BRANLIEST
Vsevolod [243]

Explanation:

- Newton's first law of motion:

"An object at rest (or in uniform motion) remains at rest (or in uniform motion) unless acted upon an unbalanced force

In this situation, we can apply Newton's first law to the keys of the keyboard that are not hit by the fingers of the man. In fact, as no force act on the keys, they remain at rest.

- Newton's second law of motion:

"The acceleration experienced by an object is proportional to the net force exerted on the object; mathematically:

F=ma

where F is the net force, m is the mass of the object, and a its acceleration"

In this case, we can apply Newton's second law to the keys of the keyboard that are hit by the man: in fact, as they are hit, they experience a downward force, and therefore they experience a downward acceleration.

"Newton's third law of motion:

"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"

Here We can apply Newton's third law to the pair of objects finger-key: in fact, as the finger apply a force on the key (action force), then the key exerts a force back on the finger (reaction force), equal and opposite.

3 0
3 years ago
A 0.49-kg cord is stretched between two supports, 7.8m apart. When one support is struck by a hammer, a transverse wave travels
katovenus [111]

To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

v = \sqrt{\frac{T}{\mu}}

Here,

v = Velocity

\mu= Linear density (Mass per  unit length)

T = Tension

Rearranging to find the Period we have that

T = v^2 \mu

T = v^2 (\frac{m}{L})

As we know that speed is equivalent to displacement in a unit of time, we will have to

T = (\frac{L}{t}) ^2(\frac{m}{L})

T = (\frac{7.8}{0.83})^2 (\frac{0.49}{7.8})

T = 5.54N

Therefore the tension is 5.54N

8 0
2 years ago
A particle moves at a constant speed in a circular path with a radius of r=2.06 cm. If the particle makes four revolutions each
nataly862011 [7]

The centripetal acceleration is 13.0 m/s^2

Explanation:

For an object in uniform circular motion, the centripetal acceleration is given by

a=\frac{v^2}{r}

where

v is the speed of the object

r is the radius of the circle

The speed of the object is equal to the ratio between the length of the circumference (2\pi r) and the period of revolution (T), so it can be rewritten as

v=\frac{2\pi r}{T}

Therefore we can rewrite the acceleration as

a=\frac{4\pi^2 r}{T^2}

For the particle in this problem,

r = 2.06 cm = 0.0206 m

While it makes 4 revolutions each second, so the period is

T=\frac{1}{4}s = 0.25 s

Substituting into the equation, we find the acceleration:

a=\frac{4\pi^2 (0.0206)}{0.25^2}=13.0 m/s^2

Learn more about centripetal acceleration:

brainly.com/question/2562955

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • How much work is done if I use 5N of force to move an object 2 meters
    9·2 answers
  • The driver of a car slams on the brakes when he sees a tree blocking the road. the car slows uniformly with acceleration of -5.9
    15·1 answer
  • You are carrying a 7.0-kg bag of groceries as you walk at constant velocity along the sidewalk. You walk a distance of 82 meters
    5·1 answer
  • An elevator accelerates upward at 2.0 m/s?,
    10·1 answer
  • What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22
    15·1 answer
  • The planet earth orbits around the sun and also spins around its own axis. True or False
    7·1 answer
  • A machine pulls a 46 kg trunk 3.0 m up a 42o ramp at constant velocity, with the machine's force on the trunk directed parallel
    5·2 answers
  • to keep everything the same between the man and the boy, the table below for the mans motion covers the same interval as the one
    7·1 answer
  • How does a push or pull affect motion?
    10·1 answer
  • 3
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!