They don't lose OR gain electrons as they've already achieved the octet rule and have 8 valence electronsn
Specific heat capacity= heat energy/mass×temperature rise
962°C - 20°C = 942K
Heat energy (Eh) = 239 × 1.55 × 942
Eh= 348963.9J
shc of Ag: 238.6 J/kg-K
m of Ag: 1.55kg
V= 1/3 π r²h
this is the formula for a cone hope this helps :)
(a) This is a freefall problem in disguise - when the ball returns to its original position, it will be going at the same speed but in the opposite direction. So the ball's final velocity is the negative of its initial velocity.
Recall that

We have
, so that

(b) The speed of the ball at the start and at the end of the roll are the same 8 m/s, so the average speed is also 8 m/s.
(c) The ball's average velocity is 0. Average velocity is given by
, and we know that
.
(d) The position of the ball
at time
is given by

Take the starting position to be the origin,
. Then after 6 seconds,

so the ball is 42 m away from where it started.
We're not asked to say in which direction it's moving at this point, but just out of curiosity we can determine that too:

Since the velocity is positive, the ball is still moving up the incline.
The answer would be a reflection. This is because, t<span>he color of an object is actually the wavelengths of the light reflected while all other wavelengths are absorbed. Color, in this case, refers to the different wavelengths of light in the </span>visible light spectrum<span>perceived by our eyes. The physical and chemical composition of matter determines which wavelength (or color) is reflected.</span>