There are 4 significant figures! Start counting after the first non-zero digit :)
Hope this helps.
Answer:
Explanation:
C = 41.4/12 = 3.43
H = 3.47/1 = 3.47
O = 55.1/16 =3.44
CHO is the skeletal formula (divide each by the lowest number above). The results are close enough to 1 to be 1.
(CHO)_x = 116
C + H + O = 29
(29) _ x = 116
x = 116/29
x = 4
So there area 4 carbons 4 hydrogens and 4 oxygens.
The correct formula is C4H4O4
Explanation:
The speed of molecules increases when temperature is increased as it will result in more number of collisions between the molecules. Thus, there will be increase in kinetic energy of molecules and increase in the speed of solvent molecules.
Whereas on decreasing the temperature, the kinetic energy of molecules will decrease. This will result in less number of collisions between the molecules. Therefore, the speed of solvent molecules will slow down.
Answer:
Molecular formula is C₂₆H₃₆O₄
Explanation:
The compound is 75.69 % C, 8.80 % H and 15.51 % O. This data means, that in 100 g of compound we have 75.69 g, 15.51 g and 8.80 g of, C, O and H, respectively. We know the molar mass of the compound, so we can work to solve the moles of each element.
In 100 g of compound we have 75.69 g C, 15.51 g O and 8.80 g H
In 412 g of compound we would have:
(412 . 75.69) / 100 = 311.8 of C
(412 . 15.51) / 100 = 63.9 g of O
(412 . 8.80) / 100 = 36.2 g of H
Now, we can determine the moles of each, that are contained in 1 mol of compound.
312 g / 12 g/mol 26 C
64 g / 16 g/mol = 4 O
36 g / 1 g/mol = 36 H
Molecular formula is C₂₆H₃₆O₄
Answer:
<span>5.1012⋅<span>10<span>−12</span></span>J t</span>he idea here is that you need to use the mass of a single proton and the mass of a single neutron to calculate the mass of a lithium-6 nucleus, then use the measured value to find its mass defect.