Answer: Option (4) is the correct answer.
Explanation:
It is known that equilibrium constant is represented as follows for any general reaction.

K = ![\frac{[C][D]}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5BD%5D%7D%7B%5BA%5D%5BB%5D%7D)
As equilibrium constant is directly proportional to the concentration of products so more is the value of equilibrium constant more will be the number of products formed.
As a result, more is the time taken by the reaction to reach towards equilibrium. Whereas smaller is the value of equilibrium constant more rapidly it will reach towards the equilibrium.
Thus, we can conclude that cases where K is a very small number will require the LEAST time to arrive at equilibrium.
Answer: I THINK C
Explanation: It has a 25% chance of being right so I'd wait if I were you just sayin
Answer:
Celsius is currently a derived unit for temperature in the SI system, kelvin being the base unit. ... The two main reference points of the Celsius scale were the freezing point of water (or melting point of ice) being defined as 0 °C and the boiling point of water being 100 °C.
Explanation:
Hope it helps
Shielding electrons are the electrons in the energy levels between the nucleus and the valence electrons. They are called "shielding" electrons because they "shield" the valence electrons from the force of attraction exerted by the positive charge in the nucleus. Hope this helps!!