Answer:
The amount of HC₂H3₃2(aq) in the flask after the addition of 5.0mL of NaOH(aq) compared to the amount of HC₂H₃O₂(aq) in the flask after the addition of 1.0mL is much smaller because more HC₂H₃O₂(aq) is required to react with 5.0 mL NaOH than with 1.0 mL NaOH.
Explanation:
Equation of the reaction between acetic acid, HC₂H₃O₂(aq) and sodium hydroxide, NaOH(aq) is given below:
CH₃COOH (aq) + NaOH (aq) ----> CH₃COONa (aq) + H₂O
The equation of the reaction shows that acetic acid andsodium hydroxide will react in a 1:1 ratio
Since the concentration of NaOH was not given, we can assume that the concentration is 0.01 M
Moles of NaOH in 5.0 mL of 0.01 M NaOH = 0.01 × 5/1000 = 0.00005 moles
Moles of NaOH in 1.0 mL of 0.01 M NaOH = 0.01 ×1/1000 = 0.0001 moles
Ratio of moles of NaOH in 5.0 mL to 1.0 mL = 0.00005/0.00001 = 5
There are five times more moles of NaOH in 5.0 mL than in 1.0 mL and this means that 5 times more the quantity of HC₂H₃O2(aq) required to react with 1.0 mL NaoH is needed to react with 5.0 mL NaOH.
Therefore, the amount of HC₂H₃O2(aq) in the flask after the addition of 5.0mL of NaOH(aq) compared to the amount of HC₂H₃O₂(aq) in the flask after the addition of 1.0mL is much smaller because more HC₂H₃O₂(aq) is required to react with 5.0 mL NaOH than with 1.0 mL NaOH.
Answer: sound can slow down, so when it travels through all of that it's muffled and kind of blocked. sound travels at 332 metres per second so it's hard to stop the sound
Explanation:
C₁₀H₁₄N₂ is the empirical formula.
In chemistry, the empirical formula of a chemical compound is the simplest whole number ratio of atoms present in a compound.
<h3>Tell us about the empirical formula.</h3>
The empirical formula of a chemical compound in chemistry is the simplest whole number ratio of atoms in a compound. Two simple instances of this concept are the empirical formulas of sulfur monoxide (SO) and disulfur dioxide (S2O2).
Its empirical formula is the simplest whole number ratio of each type of atom in the compound. Data about the mass of each component in a compound or the composition's percentage can be used to calculate it.
To learn more about empirical formula visit:
brainly.com/question/14044066
#SPJ4
Answer : The concentration of
at equilibrium is 0 M.
Solution : Given,
Concentration of
= 0.0200 M
Concentration of
= 1.00 M
The given equilibrium reaction is,
![Fe^{3+}(aq)+3C_2O_4^{2-}(aq)\rightleftharpoons [Fe(C_2O_4)_3]^{3-}(aq)](https://tex.z-dn.net/?f=Fe%5E%7B3%2B%7D%28aq%29%2B3C_2O_4%5E%7B2-%7D%28aq%29%5Crightleftharpoons%20%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%28aq%29)
Initially conc. 0.02 1.00 0
At eqm. (0.02-x) (1.00-3x) x
The expression of
will be,
![K_c=\frac{[[Fe(C_2O_4)_3]^{3-}]}{[C_2O_4^{2-}]^3[Fe^{3+}]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%5D%7D%7B%5BC_2O_4%5E%7B2-%7D%5D%5E3%5BFe%5E%7B3%2B%7D%5D%7D)

By solving the term, we get:

Concentration of
at equilibrium = 0.02 - x = 0.02 - 0.02 = 0 M
Therefore, the concentration of
at equilibrium is 0 M.
The answer is C, high altitudes remove the water from heat source.