Lets x to be number of students.
1) If each students get 3 ml, then all students get 3x ml.
There was n ml.
(n-3x) ml leftover
n - 3x = 5
2) If each students get 4 ml.
then all students get 4x ml.
n+21 = 4x
3)
n - 3x = 5
- (n+21 = 4x) -------> -n -21=-4x
n - 3x = 5
<span>-n -21= - 4x
</span>-3x-21=5 - 4x
x=5+21
x=26
Answer : 26 students
Check:
x=26, n-3x = 5, n-3*26=5, n=83
n+21 = 4x
83+21=4*26
104 = 104 true
Answer:

Step-by-step explanation:



Answer:
In the form of
Y= mx+c
Y= 1/2x +2
m = 1/2
Step-by-step explanation:
A linear equation in it's standard form is in the format
Y= mx+c
Where m is the slope and c is the y intercept
Let's use these two points to determine both the slope and the equation
(2, 3), (4,4)
Slope= (y2-y1)/(x2-x1)
Slope= (4-3)/(4-2)
Slope= 1/2
Equation of the linear function
(Y-y1)/(x-x1)= m
(Y-3)/(x-2)= 1/2
2(y-3) = x-2
2y -6 = x-2
2y= x-2+6
2y= x+4
Y= 1/2x +2
![\bf \begin{cases} x=1\implies &x-1=0\\ x=1\implies &x-1=0\\ x=-\frac{1}{2}\implies 2x=-1\implies &2x+1=0\\ x=2+i\implies &x-2-i=0\\ x=2-i\implies &x-2+i=0 \end{cases} \\\\\\ (x-1)(x-1)(2x+1)(x-2-i)(x-2+i)=\stackrel{original~polynomial}{0} \\\\\\ (x-1)^2(2x+1)~\stackrel{\textit{difference of squares}}{[(x-2)-(i)][(x-2)+(i)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D-%5Cfrac%7B1%7D%7B2%7D%5Cimplies%202x%3D-1%5Cimplies%20%262x%2B1%3D0%5C%5C%0Ax%3D2%2Bi%5Cimplies%20%26x-2-i%3D0%5C%5C%0Ax%3D2-i%5Cimplies%20%26x-2%2Bi%3D0%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%28x-1%29%282x%2B1%29%28x-2-i%29%28x-2%2Bi%29%3D%5Cstackrel%7Boriginal~polynomial%7D%7B0%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%5E2%282x%2B1%29~%5Cstackrel%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B%28x-2%29-%28i%29%5D%5B%28x-2%29%2B%28i%29%5D%7D)
![\bf (x^2-2x+1)(2x+1)~[(x-2)^2-(i)^2] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)-(-1)] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)+1] \\\\\\ (x^2-2x+1)(2x+1)~[x^2-4x+5] \\\\\\ (x^2-2x+1)(2x+1)(x^2-4x+5)](https://tex.z-dn.net/?f=%5Cbf%20%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x-2%29%5E2-%28i%29%5E2%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29%2B1%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5Bx%5E2-4x%2B5%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29%28x%5E2-4x%2B5%29)
of course, you can always use (x-1)(x-1)(2x+1)(x²-4x+5) as well.