Resistance per 1000 feet for gauge 14 wire is given as
R = 2.525 ohm
now if wire is of length 50 feet only then the resistance is given as


now if 11 A current flows through the wire then the voltage drop is given by ohm's law



so most appropriate answer in given options is
A. 1.8 Volts
Answer:
T = 676 N
Explanation:
Given that: f = 65 Hz, L = 2.0 m, and ρ = 5.0 g
= 0.005 kg
A stationary wave that is set up in the string has a frequency of;
f = 

⇒ T = 4
M
Where: t is the tension in the wire, L is the length of the wire, f is the frequency of the waves produced by the wire and M is the mass per unit length of the wire.
But M = L × ρ = (2 × 0.005) = 0.01 kg/m
T = 4 ×
×
× 0.01
= 4 × 4 ×4225 × 0.01
= 676 N
Tension of the wire is 676 N.
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m
The magnitude of the initial velocity of the ball relative to the ground is 9.3 m/s.
<h3>What is relative velocity?</h3>
Relative velocity is the velocity of an object relative to another moving in the same plane. On frame of reference is used when measuring relative velocity.
The velocity of the ball relative to the ground is the sum of the velocity of the ballistic cart and the velocity in which the ball is ejected.
The velocity of the ball relative to the ground = 6.5 m/s + 2.8 m/s = 9.3 m/s
In conclusion, relative velocity measures the velocity of an object from a reference point.
Learn more about relative velocity at: brainly.com/question/24337516
#SPJ1