Answer:![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Explanation:
Given
Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge
Force due to the charge placed at diagonally opposite end on -q charge

where
Distance between the two charges

negative sign indicates that it is an attraction force
Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

The magnitude of force by both the charge is same but at an angle of 
thus combination of two forces at 2 and 3 will be

Now it will add with force due to 1 charge
Thus net force will be
![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
A and c
Because it defines the boundaries of the system
Answer:
Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s
Explanation:
Let's start out with finding the force acting downwards because of the mass of 'The Rock':
Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N
Now the problem also states that the kinetic friction of the desk in this problem is 370 N
Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N
Now lets use F = ma to calculate for the acceleration of the desk:
787.58 = 63 x acceleration
acceleration = 12.501 m/s
Finally, we can use the motion equation:

here u = 0 m/s (since initial speed of the desk is 0)
a = 12.501 m/s
and s = 10 m
Solving this we get:


Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at 15.812 m/s when the desk reaches the window.
Answer:
2/R*sqrt (g*s*sin(θ)) = w
Explanation:
Assume:
- The cylinder with mass m
- The radius of cylinder R
- Distance traveled down the slope is s
- The angular speed at bottom of slope w
- The slope of the plane θ
- Frictionless surface.
Solution:
- Using energy principle at top and bottom of the slope. The exchange of gravitational potential energy at height h, and kinetic energy at the bottom of slope.
ΔPE = ΔKE
- The change in gravitational potential energy is given as m*g*h.
- The kinetic energy of the cylinder at the bottom is given as rotational motion: 0.5*I*w^2
- Where I is the moment of inertia of the cylinder I = 0.5*m*R^2
We have:
m*g*s*sin(θ) = 0.25*m*R^2*w^2
2/R*sqrt (g*s*sin(θ)) = w
- The angular velocity depends on plane geometry θ , distance travelled down slope s, Radius of the cylinder R , and gravitational acceleration g