Answer : The value of equilibrium constant (Kc) is, 0.0154
Explanation :
The given chemical reaction is:

Initial conc.
0 0
At eqm.
x x
As we are given:
Concentration of
at equilibrium = 
That means,

The expression for equilibrium constant is:
![K_c=\frac{[SO_2][Cl_2]}{[SO_2Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSO_2%5D%5BCl_2%5D%7D%7B%5BSO_2Cl_2%5D%7D)
Now put all the given values in this expression, we get:



Thus, the value of equilibrium constant (Kc) is, 0.0154
Geologists have a rule of thumb: when molten rock cools and solidifies, crystals of compounds with the smallest lattice energies appear at the bottom of the mass because of high power of solubility.
<h3>What is lattice energy? </h3>
The lattice energy is defined as the energy change upon the formation of one mole of crystalline ionic compound from its same constituent ions, that are assumed to be initially in the state of gases. It is also defined as measure of the cohesive forces which bind ionic solids together.
As the lattice energy of the ionic compound increase the solubility of that particular compound decrease. Hence compound which have low lattice energy are more soluble than compound having high lattice energy. When molten rocks cools and solidified, the compound having smallest lattice energy become more soluble than crystals of compound which have large lattice energy. Therefore, crystal of compound with the smallest lattice energy start appearing at the bottom of the mass.
Thus, we concluded that due to high solubility power of compound with low lattice energy appear at the bottom of the mass.
learn more about lattice energy:
brainly.com/question/13169815
#SPJ4
I think this is what you're after:
Cs(g) → Cs^+ + e⁻ ΔHIP = 375.7 kJ mol^-1 [1]
Convert to J and divide by the Avogadro Const to give E in J per photon
E = 375700/6.022×10^23 = 6.239×10^-19 J
Plank relationship E = h×ν E in J ν = frequency (Hz s-1)
Planck constant h = 6.626×10^-34 J s
6.239×10^-19 = (6.626×10^-34)ν
ν = 9.42×10^14 s^-1 (Hz)
IP are usually given in ev Cs 3.894 eV
<span>E = 3.894×1.60×10^-19 = 6.230×10^-19 J per photon </span>
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Answer:
when the forward and reverse reactions occur at equal rates.
chemical reaction is in equilibrium when the concentrations of reactants and products are constant - their ratio does not vary.