Answer:
1) current = I
2) Resistance = V/I
3) current = 2I
4) resistance = V/2I
5) current = 3I
6) Resistance = V/3I
7) Current = 4I
8) Resistance = V/4I
Explanation:
When one bulb is connected across the battery then let say the current is given as I
Then resistance is given as

When two bulbs are in parallel with the battery then
total current becomes twice of initial current
so we have
current = 2I
Resistance of the circuit is now

When three bulbs are in parallel with the battery then
total current becomes three times of initial current
so we have
current = 3I
Resistance of the circuit is now

When four bulbs are in parallel with the battery then
total current becomes four times of initial current
so we have
current = 4I
Resistance of the circuit is now

The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C
HOW TO CALCULATE SPECIFIC HEAT CAPACITY:
The specific heat capacity of a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
- Q = quantity of heat absorbed (J)
- c = specific heat capacity (4.18 J/g°C)
- m = mass of substance
- ∆T = change in temperature (°C)
According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:
2510 = 158 × c × (61°C - 32°C)
2510 = 4582c
c = 2510 ÷ 4582
c = 0.5478 J/g°C
Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.
Learn more about specific heat capacity at: brainly.com/question/2530523