1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
4 years ago
15

A discus thrower accelerates a discus from rest to a speed of 25.3 m/s by whirling it through 1.29 rev. Assume the discus moves

on the arc of a circle 0.96 m in radius. A discus thrower moving in a circle as he prepares to throw the discus. (a) Calculate the final angular speed of the discus. rad/s
Physics
1 answer:
frozen [14]4 years ago
6 0

Answer:

ω = 26.35 rad/s

Explanation:

given,                            

speed of discus thrower = 25.3 m/s

whirling through  = 1.29 rev          

radius of circular arc = 0.96 m          

final angular speed of the discus = ?

using formula                      

v =  ω r                  

v  is the velocity of disk

ω is the angular speed of the discus

r is the radius of arc                      

\omega = \dfrac{v}{r}                

\omega = \dfrac{25.3}{0.96}                      

      ω = 26.35 rad/s

Final angular speed of the discus is equal to ω = 26.35 rad/s

You might be interested in
Which of the following statements is an accurate description of sound transmission through various mediums?
klio [65]
The answer is D. Sound insulators prevent sound from being transmitted better than elastic solids because sound insulators basically muffle and block the sound waves.

5 0
3 years ago
Read 2 more answers
Two very small charged particles exert an electrostatic force F on each other. If the distance between them is doubled, the forc
Solnce55 [7]

Answer:

The answer is D

Explanation:

Your welcome

4 0
3 years ago
A 15 m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60° angle with horizontal. (a) Find t
scoray [572]

Answer:

a)    F₁ = 267.3 N,   N₁ = 1300 N,  b)    μ = 0.324

Explanation:

For this exercise we use the rotational equilibrium condition, we have a reference system is the floor and the anticlockwise rotations as positive, in the adjoint we can see a diagram of the forces

           

let's use subscript 1 for the ladder and 2 for the firefighter

            ∑ τ = 0

          -W₁ x₁ - W₂ x₂ + N₁ y = 0

           N₁ = \frac{W_1 x_1 + W_2 x_2}{y}          (1)

the center of mass of the ladder is at its geometric center,

d = L / 2 = 15/2 = 7.5 m

         cos 60 = x₁ / d₁

         x₁ = d₁ cos 60

         x₁ = 7.5 cos 60

         x₁ = 3.75 m

for the firefighter d₂ = 4 m

         cos 60 = x₂ / d₂

         x₂ = d₂ cos 60

          x₂ = 4 cos 60 = 2 m

for the fulcrum d₃ = 15 m

         sin 60 = y / d₃

         y = d₃ sin 60

         y = 15 sin 60

         y = 13 m

we look for the Normal by substituting in equation 1

         N₂ = \frac{500 \ 3.75 \ + 800 \ 2}{13}

         N₂ = 267.3 N

now let's use the translational equilibrium relations

 X axis

           F₁ - N₂ = 0

           F₁ = N₂

           F₁ = 267.3 N

Axis y

          N₁ - W₁ -W₂ = 0

          N₁ = W₁ + W₂

          N₁ = 500 + 800

          N₁ = 1300 N

b) for this case change the firefighter's distance d₂ = 9 m

          x₂ = 9 cos 60

          x₂ = 4.5 m

we substitute in 1

          N₂ = \frac{500 \ 3.75 \ + 800 \ 4.5}{13}  

          N₂ = 421.15 N

of the translational equilibrium equation on the x-axis

          fr = F₁ = N₂

          fr = 421.15 N

friction force has the expression

          fr = μ N

in this case the reaction of the Earth to the support of the ladder is N1 = 1300N

          μ = fr / N₁

          μ = 421.15 / 1300

          μ = 0.324

8 0
3 years ago
★CHECK MY ANSWER PLEASE★
Sergeu [11.5K]
You are correct!
Happy to assist you!
8 0
3 years ago
Read 2 more answers
An electron is placed on a line connecting two fixed point charges of equal charge but the opposite sign. The distance between t
viktelen [127]

Answer:

a)    F_net = 6.48 10⁻¹⁸ ( \frac{1}{x^2} + \frac{1}{(0.300-x)^2} ),   b) x = 0.15 m

Explanation:

a) In this problem we use that the electric force is a vector, that charges of different signs attract and charges of the same sign repel.

The electric force is given by Coulomb's law

         F =k \frac{q_2q_2}{r^2}

         

Since when we have the two negative charges they repel each other and when we fear one negative and the other positive attract each other, the forces point towards the same side, which is why they must be added.

          F_net= ∑ F = F₁ + F₂

let's locate a reference system in the load that is on the left side, the distances are

left side - electron       r₁ = x

right side -electron     r₂ = d-x

let's call the charge of the electron (q) and the fixed charge that has equal magnitude Q

we substitute

          F_net = k q Q  ( \frac{1}{r_1^2}+ \frac{1}{r_2^2})

          F _net = kqQ  ( \frac{1}{x^2} + \frac{1}{(d-x)^2} )

         

let's substitute the values

          F_net = 9 10⁹  1.6 10⁻¹⁹ 4.50 10⁻⁹ ( \frac{1}{x^2} + \frac{1}{(0.30-x)^2} )

          F_net = 6.48 10⁻¹⁸ ( \frac{1}{x^2} + \frac{1}{(0.300-x)^2} )

now we can substitute the value of x from 0.05 m to 0.25 m, the easiest way to do this is in a spreadsheet, in the table the values ​​of the distance (x) and the net force are given

x (m)        F (N)

0.05        27.0 10-16

0.10          8.10 10-16

0.15          5.76 10-16

0.20         8.10 10-16

0.25        27.0 10-16

b) in the adjoint we can see a graph of the force against the distance, it can be seen that it has the shape of a parabola with a minimum close to x = 0.15 m

4 0
3 years ago
Other questions:
  • How much heat is required to raise the temperature of 45.5 g of water from its melting point to its boiling point?
    15·1 answer
  • A commuter airplane starts from an airport and takes theroute. The plane first flies to city A, located 175 km away in a directi
    11·1 answer
  • What is the temperature used for the extension step?
    12·1 answer
  • A hiker leaves her camp and walks 3.5 km in a direction of 55° south of west to the lake. after a short rest at the lake, she hi
    7·2 answers
  • Which is an example of radiation?
    13·2 answers
  • Find the gravitational potential energy of a light that has a mass of 13.0 kg and is 4.8 m above the ground
    12·1 answer
  • What is the pressure transmitted in the liquid on a hydraulic pump where an elephant with a weight of 40 000 N is placed on top
    14·1 answer
  • What accommodations can be made for people with impaired vision?
    8·1 answer
  • Imagine that you are sitting on a couch watching TV and that you will continue sitting on the couch watching TV until someone ch
    8·1 answer
  • 3.2 Define conservation of energy.<br>​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!