Answer:
7.1 J
Explanation:
From the question,
Work done by the mover = work done in pushing the crate + work done against friction
W = W'+Wf................. Equation 1
W = mgd+mgμd............ Equation 2
W = mgd(1+μ)................ Equation 3
Where m = mass of the crate, g = acceleration due to gravity, d = distance, μ = coefficient of friction.
Given: m = 46 kg, d = 10.5 mm = 0.0105 m, μ = 0.5
constant: g = 9.8 m/s²
Substitute these values into equation 3
W = 46×9.8×0.0105(1+0.5)
W = 7.1 J
The correct option will be
D. Time, initial velocity and final velocity
The Formula can be written as,
Acceleration=Final velocity-Initial Velocity/Time
The battery will be full still a 8v bc of no time comparison
Explanation:
If we assume negligible air resistance and heat loss, we can assume that all of the Gravitational potential energy of the ball will turn into Kinetic energy as it falls toward the ground.
Therefore our Kinetic energy = mgh = (10kg)(9.81N/kg)(100m) = 9,810J.
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.