Answer:
La velocidad de la luz en el vacío es una constante universal con el valor de 299 792 458 m/s (186 282,397 mi/s),aunque suele aproximarse a 3·108 m/s. Se simboliza con la letra c, proveniente del latín celéritās (en español, celeridad o rapidez).
¿Cuál es la consecuencia que a velocidad de la luz sea constante?
Respuesta. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.
Answer:
890 N
Explanation:
Acceleration is change in velocity over change in time.
a = Δv / Δt
a = (11 m/s − 0 m/s) / 0.26 s
a = 42.3 m/s²
Force is mass times acceleration.
F = ma
F = (21 kg) (42.3 m/s²)
F ≈ 890 N
Kinetic energy is the energy associated with the motion of an object. It's a scalar quantity, there is no direction associated with KE and it has no components.

.
Therefore Kinetic energy is 817.96J.
The process that water redeposit into a lake in the form of rain is precipitation.
<h3>What is water runoffs?</h3>
Water runoff occurs when there is more water than land can absorb.
The water flows across the surface of the land and into nearby creeks, streams, or lakes.
Runoff can come from both natural processes and human activity.
When rain falls to the earth from clouds and runs downhill into rivers and lakes.
During evaporation, the water turns from liquid into gas, and moves from oceans and lakes into the atmosphere where it forms clouds.
<h3>What is precipitation?</h3>
Precipitation is any liquid (rain) or frozen water that forms in the atmosphere and falls back to the Earth, for example it could fall on land or into lakes and rivers.
Thus, the process that water redeposit into a lake in the form of rain is precipitation.
Learn more about precipitation here: brainly.com/question/1783904
#SPJ1
The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³