Answer:
48.075g(or 48g in correct sig figs)***
Explanation:
=48.075g
*64.1g is the mass of SO2 which is calculated by simply taking the mass of sulfur and oxygen(but doubling it since there are two oxygens) and adding them together(32.1+2x16.0)
**btw the mol units cancel because of dimensional analysis in case anyone was wondering why
***if your teacher is like mine and specifically wants your answer in correct sig figs, use the answer in parentheses as the original problem only has 2 sig figs
-Just look up “H2O lewis structure
-1.5
-Don’t know the VSEPR
-Polar Covalent
-Again, don’t know VSEPR
-Just look up H2O molecule
Answer:
Metals tend to lose electrons in chemical reactions, as indicated by their low ionization energies. Within a compound, metal atoms have relatively low attraction for electrons, as indicated by their low electronegativities.
Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
Lewis acid is a substance that donates a lone-pair of electrons.
Explanation:
What is said in the statement corresponds to a Lewis base, not an acid. For example, NH3 is a Lewis base, since it is capable of donating its pair of electrons. Trimethylborane (Me3B) is a Lewis acid, since it is capable of accepting a solitary pair.