The crystalline allotropes of sulfur are very strong and have a high melting and boiling point while the amorphous allotropes of sulfur are brittle and breaks easily.
<h3>What is a crystalline substance?</h3>
A crystalline substance is one that has a definite arrangement of the atoms in the substance. An amorphous substance lacks this definite arrangement. We can see this arrangement when we conduct an X-ray crystallography of the sulfur.
Also, the crystalline allotropes of sulfur are very strong and have a high melting and boiling point while the amorphous allotropes of sulfur are brittle and breaks easily.
Learn more about sulfur:brainly.com/question/13469437
#SPJ1
2.38×10^-3
Explanation:
from the question,the we calculate the latent heat of vaporization with the difference in temperature being put into consideration
Answer:
An experiment is a research method performed within a completely controlled environment that uses groups of individuals ( subjects), one of which the factors being tested are not spplied on, an independent factor of the hypothesys ( to be tested ), for example the resilience of a group of teenagers) and a dependant factor that is applied to check how it varyes depending on the tested factor ( for example, the most challanging experience of their generation)
The number of protons in the nucleus for that element
Answer:
(a) 0.25 mol
(b) 0.11 mol
(c) 8.77 mol
Explanation:
(a)
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 1.00 atm
V = Volume of the gas = 6.0 L
T = Temperature of the gas = 298 K
R = Gas constant =
n = number of moles = ?
Putting values in above equation, we get:

(b)
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 0.296 atm
V = Volume of the gas = 6.0 L
T = Temperature of the gas = 200 K
R = Gas constant =
n = number of moles = ?
Putting values in above equation, we get:

(c)
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 30 atm
V = Volume of the gas = 6.0 L
T = Temperature of the gas = 250 K
R = Gas constant =
n = number of moles = ?
Putting values in above equation, we get:
