First you calculate the concentration of [OH⁻] in <span>solution :
POH = - log [ OH</span>⁻]
POH = - log [ 0.027 ]
POH = 1.56
PH + POH = 14
PH + 1.56 = 14
PH = 14 - 1.56
PH = 12.44
hope this helps!
<u>Answer:</u> The value of equilibrium constant for the net reaction is 11.37
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> ![A+2B\xrightarrow[]{K_1} 2C](https://tex.z-dn.net/?f=A%2B2B%5Cxrightarrow%5B%5D%7BK_1%7D%202C)
<u>Equation 2:</u> ![2C\xrightarrow[]{K_2} D](https://tex.z-dn.net/?f=2C%5Cxrightarrow%5B%5D%7BK_2%7D%20D)
The net equation follows:
![D\xrightarrow[]{K} A+2B](https://tex.z-dn.net/?f=D%5Cxrightarrow%5B%5D%7BK%7D%20A%2B2B)
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of equilibrium constant for the net reaction is 11.37
Answer:27,430J/g.K
Explanation:q= mass* specific heat capacity * change in temperature (kelvin)
22*4.184*[(100-25) + 273]
22*4.184*298
27,430J/g.K
i believe the answer would be D. When ordered by atomics mass every eighth element has similar properties.
The planets that could host liquid water and might have rocky ... Liquid water is a necessity for the kind of life we know