a) Distance Earth-Sun is 215.5 solar radii and 23,548 Earth radii
b)
Mercury: 1.7 days
Mars: 6.5 days
Jupiter: 21.7 days
Uranus: 86.8 days
Neptune: 130.2 days
c)
Earths can fit inside the Sun
Explanation:
a)
The distance between the Sun and the Earth is 150 millions km, so
![d=150\cdot 10^6 km = 1.50\cdot 10^{11} m](https://tex.z-dn.net/?f=d%3D150%5Ccdot%2010%5E6%20km%20%3D%201.50%5Ccdot%2010%5E%7B11%7D%20m)
The solar radius is
![r_s = 6.96\cdot 10^5 km = 6.96\cdot 10^8 m](https://tex.z-dn.net/?f=r_s%20%3D%206.96%5Ccdot%2010%5E5%20km%20%3D%206.96%5Ccdot%2010%5E8%20m)
Therefore the distance Earth-Sun in solar radii is
![d_s = \frac{d}{r_s}=\frac{1.50\cdot 10^{11}}{6.96\cdot 10^8}=215.5](https://tex.z-dn.net/?f=d_s%20%3D%20%5Cfrac%7Bd%7D%7Br_s%7D%3D%5Cfrac%7B1.50%5Ccdot%2010%5E%7B11%7D%7D%7B6.96%5Ccdot%2010%5E8%7D%3D215.5)
The Earth radius is
![r_e = 6.37\cdot 10^6 m](https://tex.z-dn.net/?f=r_e%20%3D%206.37%5Ccdot%2010%5E6%20m)
Therefore the distance Earth-Sun in Earth radii is
![d_e=\frac{d}{r_e}=\frac{1.50\cdot 10^{11}}{6.37\cdot 10^6}=23,548](https://tex.z-dn.net/?f=d_e%3D%5Cfrac%7Bd%7D%7Br_e%7D%3D%5Cfrac%7B1.50%5Ccdot%2010%5E%7B11%7D%7D%7B6.37%5Ccdot%2010%5E6%7D%3D23%2C548)
b)
The speed of the solar wind is
![v=400 km/s = 4\cdot 10^5 m/s](https://tex.z-dn.net/?f=v%3D400%20km%2Fs%20%3D%204%5Ccdot%2010%5E5%20m%2Fs)
The value of 1 AU (Astronomical Unit) is
(distance Earth-Sun)
The distance between the Sun and Mercury is:
![d=0.4 AU \cdot 1.50\cdot 10^{11}=6.0\cdot 10^{10} m](https://tex.z-dn.net/?f=d%3D0.4%20AU%20%5Ccdot%201.50%5Ccdot%2010%5E%7B11%7D%3D6.0%5Ccdot%2010%5E%7B10%7D%20m)
So the time taken by a parcel of solar wind to reach Mercury is:
![t=\frac{d}{v}=\frac{6.0\cdot 10^{10}}{4.0\cdot 10^5}=150,000 s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7Bd%7D%7Bv%7D%3D%5Cfrac%7B6.0%5Ccdot%2010%5E%7B10%7D%7D%7B4.0%5Ccdot%2010%5E5%7D%3D150%2C000%20s)
Converting into days (
),
![t=\frac{150,000}{86400}=1.7 d](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B150%2C000%7D%7B86400%7D%3D1.7%20d)
The distance between the Sun and Mars is:
![d=1.5 AU \cdot 1.50\cdot 10^{11}=2.25\cdot 10^{11} m](https://tex.z-dn.net/?f=d%3D1.5%20AU%20%5Ccdot%201.50%5Ccdot%2010%5E%7B11%7D%3D2.25%5Ccdot%2010%5E%7B11%7D%20m)
So the time taken by a parcel of solar wind to reach Mars is:
![t=\frac{d}{v}=\frac{2.25\cdot 10^{11}}{4.0\cdot 10^5}=562,500 s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7Bd%7D%7Bv%7D%3D%5Cfrac%7B2.25%5Ccdot%2010%5E%7B11%7D%7D%7B4.0%5Ccdot%2010%5E5%7D%3D562%2C500%20s)
Converting into days (
),
![t=\frac{562,500}{86400}=6.5 d](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B562%2C500%7D%7B86400%7D%3D6.5%20d)
The distance between the Sun and Jupiter is:
![d=5 AU \cdot 1.50\cdot 10^{11}=7.5\cdot 10^{11} m](https://tex.z-dn.net/?f=d%3D5%20AU%20%5Ccdot%201.50%5Ccdot%2010%5E%7B11%7D%3D7.5%5Ccdot%2010%5E%7B11%7D%20m)
So the time taken by a parcel of solar wind to reach Jupiter is:
![t=\frac{d}{v}=\frac{7.5\cdot 10^{11}}{4.0\cdot 10^5}=1.88 \cdot 10^6 s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7Bd%7D%7Bv%7D%3D%5Cfrac%7B7.5%5Ccdot%2010%5E%7B11%7D%7D%7B4.0%5Ccdot%2010%5E5%7D%3D1.88%20%5Ccdot%2010%5E6%20s)
Converting into days (
),
![t=\frac{1.88\cdot 10^6}{86400}=21.7 d](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B1.88%5Ccdot%2010%5E6%7D%7B86400%7D%3D21.7%20d)
The distance between the Sun and Uranus is:
![d=20 AU \cdot 1.50\cdot 10^{11}=3.0\cdot 10^{12} m](https://tex.z-dn.net/?f=d%3D20%20AU%20%5Ccdot%201.50%5Ccdot%2010%5E%7B11%7D%3D3.0%5Ccdot%2010%5E%7B12%7D%20m)
So the time taken by a parcel of solar wind to reach Uranus is:
![t=\frac{d}{v}=\frac{3.0\cdot 10^{12}}{4.0\cdot 10^5}=7.5 \cdot 10^6 s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7Bd%7D%7Bv%7D%3D%5Cfrac%7B3.0%5Ccdot%2010%5E%7B12%7D%7D%7B4.0%5Ccdot%2010%5E5%7D%3D7.5%20%5Ccdot%2010%5E6%20s)
Converting into days (
),
![t=\frac{7.5\cdot 10^6}{86400}=86.8 d](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B7.5%5Ccdot%2010%5E6%7D%7B86400%7D%3D86.8%20d)
The distance between the Sun and Neptune is:
![d=30 AU \cdot 1.50\cdot 10^{11}=4.5\cdot 10^{12} m](https://tex.z-dn.net/?f=d%3D30%20AU%20%5Ccdot%201.50%5Ccdot%2010%5E%7B11%7D%3D4.5%5Ccdot%2010%5E%7B12%7D%20m)
So the time taken by a parcel of solar wind to reach Neptune is:
![t=\frac{d}{v}=\frac{4.5\cdot 10^{12}}{4.0\cdot 10^5}=11.3 \cdot 10^6 s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7Bd%7D%7Bv%7D%3D%5Cfrac%7B4.5%5Ccdot%2010%5E%7B12%7D%7D%7B4.0%5Ccdot%2010%5E5%7D%3D11.3%20%5Ccdot%2010%5E6%20s)
Converting into days (
),
![t=\frac{11.3\cdot 10^6}{86400}=130.2 d](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B11.3%5Ccdot%2010%5E6%7D%7B86400%7D%3D130.2%20d)
c)
As we said in part a), we have:
(radius of the Earth)
(radius of the Sun)
So the volume of the Earth can be calculated as:
![V_e=\frac{4}{3}\pi r_e^3 = \frac{4}{3}\pi (6.37\cdot 10^6)^3=1.08\cdot 10^{21} m^3](https://tex.z-dn.net/?f=V_e%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r_e%5E3%20%3D%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%286.37%5Ccdot%2010%5E6%29%5E3%3D1.08%5Ccdot%2010%5E%7B21%7D%20m%5E3)
While the volume of the Sun is
![V_s=\frac{4}{3}\pi r_s^3 = \frac{4}{3}\pi (6.96\cdot 10^8)^3=1.41\cdot 10^{27} m^3](https://tex.z-dn.net/?f=V_s%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r_s%5E3%20%3D%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%286.96%5Ccdot%2010%5E8%29%5E3%3D1.41%5Ccdot%2010%5E%7B27%7D%20m%5E3)
Therefore, the number of Earths that could fit inside the Sun is:
![\frac{V_s}{V_e}=\frac{1.41\cdot 10^{27}}{1.08\cdot 10^{21}}=1.3\cdot 10^6](https://tex.z-dn.net/?f=%5Cfrac%7BV_s%7D%7BV_e%7D%3D%5Cfrac%7B1.41%5Ccdot%2010%5E%7B27%7D%7D%7B1.08%5Ccdot%2010%5E%7B21%7D%7D%3D1.3%5Ccdot%2010%5E6)
Learn more about the Solar System:
brainly.com/question/2887352
brainly.com/question/10934170
#LearnwithBrainly