1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kogti [31]
3 years ago
12

2 (a) What is the distance from the Sun to Earth in terms of solar radii? Earth radii?

Physics
1 answer:
ohaa [14]3 years ago
6 0

a) Distance Earth-Sun is 215.5 solar radii and 23,548 Earth radii

b)

Mercury: 1.7 days

Mars: 6.5 days

Jupiter: 21.7 days

Uranus: 86.8 days

Neptune: 130.2 days

c) 1.3\cdot 10^6 Earths can fit inside the Sun

Explanation:

a)

The distance between the Sun and the Earth is 150 millions km, so

d=150\cdot 10^6 km = 1.50\cdot 10^{11} m

The solar radius is

r_s = 6.96\cdot 10^5 km = 6.96\cdot 10^8 m

Therefore the distance Earth-Sun in solar radii is

d_s = \frac{d}{r_s}=\frac{1.50\cdot 10^{11}}{6.96\cdot 10^8}=215.5

The Earth radius is

r_e = 6.37\cdot 10^6 m

Therefore the distance Earth-Sun in Earth radii is

d_e=\frac{d}{r_e}=\frac{1.50\cdot 10^{11}}{6.37\cdot 10^6}=23,548

b)

The speed of the solar wind is

v=400 km/s = 4\cdot 10^5 m/s

The value of 1 AU (Astronomical Unit) is

1 AU = 1.50\cdot 10^{11}m (distance Earth-Sun)

The distance between the Sun and Mercury is:

d=0.4 AU \cdot 1.50\cdot 10^{11}=6.0\cdot 10^{10} m

So the time taken by a parcel of solar wind to reach Mercury is:

t=\frac{d}{v}=\frac{6.0\cdot 10^{10}}{4.0\cdot 10^5}=150,000 s

Converting into days (1d=86400 s),

t=\frac{150,000}{86400}=1.7 d

The distance between the Sun and Mars is:

d=1.5 AU \cdot 1.50\cdot 10^{11}=2.25\cdot 10^{11} m

So the time taken by a parcel of solar wind to reach Mars is:

t=\frac{d}{v}=\frac{2.25\cdot 10^{11}}{4.0\cdot 10^5}=562,500 s

Converting into days (1d=86400 s),

t=\frac{562,500}{86400}=6.5 d

The distance between the Sun and Jupiter is:

d=5 AU \cdot 1.50\cdot 10^{11}=7.5\cdot 10^{11} m

So the time taken by a parcel of solar wind to reach Jupiter is:

t=\frac{d}{v}=\frac{7.5\cdot 10^{11}}{4.0\cdot 10^5}=1.88 \cdot 10^6 s

Converting into days (1d=86400 s),

t=\frac{1.88\cdot 10^6}{86400}=21.7 d

The distance between the Sun and Uranus is:

d=20 AU \cdot 1.50\cdot 10^{11}=3.0\cdot 10^{12} m

So the time taken by a parcel of solar wind to reach Uranus is:

t=\frac{d}{v}=\frac{3.0\cdot 10^{12}}{4.0\cdot 10^5}=7.5 \cdot 10^6 s

Converting into days (1d=86400 s),

t=\frac{7.5\cdot 10^6}{86400}=86.8 d

The distance between the Sun and Neptune is:

d=30 AU \cdot 1.50\cdot 10^{11}=4.5\cdot 10^{12} m

So the time taken by a parcel of solar wind to reach Neptune is:

t=\frac{d}{v}=\frac{4.5\cdot 10^{12}}{4.0\cdot 10^5}=11.3 \cdot 10^6 s

Converting into days (1d=86400 s),

t=\frac{11.3\cdot 10^6}{86400}=130.2 d

c)

As we said in part a), we have:

r_e = 6.37\cdot 10^6 m (radius of the Earth)

r_s=6.96\cdot 10^8 m (radius of the Sun)

So the volume of the Earth can be calculated as:

V_e=\frac{4}{3}\pi r_e^3 = \frac{4}{3}\pi (6.37\cdot 10^6)^3=1.08\cdot 10^{21} m^3

While the volume of the Sun is

V_s=\frac{4}{3}\pi r_s^3 = \frac{4}{3}\pi (6.96\cdot 10^8)^3=1.41\cdot 10^{27} m^3

Therefore, the number of Earths that could fit inside the Sun is:

\frac{V_s}{V_e}=\frac{1.41\cdot 10^{27}}{1.08\cdot 10^{21}}=1.3\cdot 10^6

Learn more about the Solar System:

brainly.com/question/2887352

brainly.com/question/10934170

#LearnwithBrainly

You might be interested in
A stone was dropped off a cliff and hit the ground with a speed of 88 ft/s . What is the height of the cliff? (Use 32 ft/s 2 for
bulgar [2K]

To solve this problem we will apply the linear motion kinematic equations, which describe the change in velocity, depending on the acceleration and the distance traveled, that is,

v_f^2 = v_i^2 +2ah

Where,

v_f= Final Velocity

v_i = Initial Velocity

a = Acceleration

h = height

Our values are given as,

v_f = 88 ft/s\\v_i = 0 ft /s\\a = 32 ft/s^2\\

Replacing we have,

vf^2 = vi^2 + 2*a*h

88^2 = 0 + 2*32*h

h= 121 ft

Therefore the height of the cliff is 121ft

5 0
3 years ago
A plane moves at a certain velocity and then it accelerates at the rate of 52m/s for a distance of 2300m to reach a velocity of
Illusion [34]
52m/s is the answer because before it was gonna accelerate it was 52 m/s
6 0
3 years ago
Three forces of magnitude 10N, 5N and 4N act on an object in the directions North, West and East respectively. Find the magnitud
Gekata [30.6K]

Answer:

19N to the south

Explanation:

F =10N + 5N + 4N

8 0
3 years ago
A particular light source gives off light waves with a measured wavelength of
Umnica [9.8K]

The frequency of the light source is 1.5 x 10¹⁵ Hz.

<h3>Frequency of the light source</h3>

The frequency of the light source is determined using the following equations;

c = fλ

where;

c is speed of light

f is the frequency

λ is the wavelength

f = (3 x 10⁸) / (2 x 10⁻⁷)

f = 1.5 x 10¹⁵ Hz

Thus, the frequency of the light source is 1.5 x 10¹⁵ Hz.

Learn more about frequency of light here: brainly.com/question/10728818

3 0
2 years ago
You throw a 50.0g blob of clay directly at the wall with an initial velocity of -5.00 m/s i. The clay sticks to the wall, and th
Whitepunk [10]

Answer:0.25 kg-m/s

Explanation:

Given

mass of blob m=50 gm

initial velocity u=-5 m/s\ \hat{i}

time of collision t=20 ms

we know Impulse is equal to change in momentum

initial momentum P_i=mu

P_i=50\times 10^{-3}\times (-5)=-0.25 kg-m/s

Final momentum P_f=50\times 10^{-3}v

P_f=0 as final velocity is zero

Impulse J=P_f-P_i

J=0-(-0.25)

J=0.25 kg-m/s

5 0
3 years ago
Other questions:
  • The objective lens in a microscope with a 17.0 cm long tube has a magnification of -50.0 and the eyepiece has a magnification of
    15·1 answer
  • Venus has about the same mass as Earth and is about the same distance from the Sun. Yet Venus does not support life. An importan
    13·2 answers
  • If, according to Newton’s third law, every reaction has an equal and opposite reaction, then how can motion ever occur? Wouldn’t
    14·2 answers
  • How does making models help scientists observe?
    13·2 answers
  • A sample of a substance burns more rapidly in pure oxygen than in air. which factor is most responsible for this high rate of re
    6·1 answer
  • Plz help will give brainliest and ten points
    14·1 answer
  • A new school is being built in a field of wildflowers. A class wanted to develop a research project to predict the effects of th
    9·1 answer
  • An electron travels 1.49 m in 7.4 µs (microsecWhat is its speed if 1 inch = 0.0254 m? Answer in units of in/min.
    6·1 answer
  • A 0.100 kg limestone cube is released from rest, and proceeds to slide down a frictionless ramp. At the bottom of the ramp, the
    10·1 answer
  • What is uniform motion ,?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!