C)
Plasma is the most abundant state of matter in the universe and has the most kinetic energy. It can be found in all the planets of our solar system, the sun, and other stars
2000J
Explanation:
Given parameters:
Extension = 0.5m
Spring constant = 16000N/m
Unknown:
Energy stored in the bow string = ?
Solution:
The energy stored in a bow string is an elastic potential energy.
It can be calculated using the expression below;
Elastic energy =
K e²
Where k is the spring constant
e is the extension
Input the parameters;
Elastic energy =
K e²
=
x 16000 x 0.5²
= 2000J
learn more:
Potential energy brainly.com/question/10770261
#learnwithBrainly
Answer:
The time taken is 
Explanation:
From the question we are told that
The mass of the ball is 
The time taken to make the first complete revolution is t= 3.60 s
The displacement of the first complete revolution is 
Generally the displacement for one complete revolution is mathematically represented as

Now given that the stone started from rest 


Now the displacement for two complete revolution is


Generally the displacement for two complete revolution is mathematically represented as

=> 
=> 
So
The time taken to complete the next oscillation is mathematically evaluated as

substituting values


Answer:
mountains are limited in their theoretical height by several processes. First is isostasy: the bigger a mountain gets, the more it weighs down its tectonic plate, so it sinks lower. ... Bottom line: mountains can get taller than Mount Everest in earth gravity, like the Appalachians probably did—but not much taller.
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>