<h3>
Answer:</h3>
91.2 g Mn
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.00 × 10²⁴ atoms Mn
<u>Step 2: Identify Conversions</u>
Avogadro's Numer
[PT] Molar Mass of Mn - 54.94 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
91.2321 g Mn ≈ 91.2 g Mn
Answer:
<em><u>Rows in the periodic table are called periods</u></em>. As one moves from left to right in a given period, the chemical properties of the elements slowly change. <em><u>Columns in the periodic table are called groups</u></em>. Elements in a given group in the periodic table share many similar chemical and physical properties
Explanation:
<span>The superscripts in an electron configuration represents the number of electrons and protons in an element. </span>
That depends on the wave, if you're talking about sound, it makes matter move in a similar wavelength as them, a mountainous shape. Light however would make whatever matter it hits start to move in the same direction as the light's angle of approach.