The y-component of the acceleration is 
Explanation:
The y-component of the acceleration is given by

where
is the y-component of the final velocity
is the y-component of the initial velocity
t is the time elapsed
For the ice skater in this problem, we have:
u = 2.25 m/s is the initial velocity, in a direction 
v = 4.65 m/s is the final velocity, in a direction 
t = 8.33 s is the time elapsed
The y-components of the initial and final velocity are:

So the y-component of the acceleration is

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
The value is 
Explanation:
From the question we are told that
The voltage is 
The current is 
Generally the resistance value is mathematically represented as

=> 
=> 
Answer:
a) v1 = 5.52m/s
b) v2 = -1.52m/s
c) v3 = 4.62m/s
d) vt = 3.85m/s
Explanation:
The velocity of the football wide receiver is his displacement per unit time.
Velocity v = (displacement d)/time t
v = d/t .....1
For each of the cases, equation 1 would be used to calculate the velocity.
a) v1 = d1/t1
d1= 16m
t1 = 2.9s
v1 = 16m/2.9s
v1 = 5.52m/s
b) v2 = d2/t2
d2 = -2.5m
t2 = 1.65s
v2 = -2.5/1.65
v2 = -1.52m/s
c) v3 = d3/t3
d3 = 24m
t3 = 5.2s
v3 = 24/5.2
v3 = 4.62m/s
d) vt = dt/tt
dt = 16m - 2.5m + 24m = 37.5m
tt = 2.9 + 1.65 + 5.2 = 9.75s
vt = 37.5/9.75
vt = 3.85m/s
Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A