1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
12

Any help is appreciated! ​

Physics
1 answer:
expeople1 [14]3 years ago
8 0

Answer:

a

Explanation:

You might be interested in
When is a secondary source more helpful than a primary source?
UNO [17]

Answer:

I think the answer is C.

Explanation:

A primary source is a first hand account of an event while a secondary source is a retelling or second hand account meaning as many details will be prevalent.

8 0
2 years ago
a 0.0780 kg lemming runs off a 5.36 m high cliff at 4.84 m/s. what is its potential energy (PE) when it is 2.00 m above the grou
zmey [24]

Answer:

1.56 J

Explanation:

The potential energy only depends on the vertical height from the ground level.

We consider the ground level to have zero P.E.

So when it is 2 m above the ground level,

P.E. =  mgh

      = 0.078×10×2

      = 1.56 J

7 0
4 years ago
Pwease help me with thesse three
DiKsa [7]

Answer:

1. Spring

2. 23.5

3. Summer

7 0
3 years ago
A mother and her 35.0 -kg child are riding an escalator to the third level of a shopping mall. If the child's gravitational pote
notka56 [123]

The increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.

<h3>What is gravitational potential energy?</h3>

The energy that an item has due to its location in a gravitational field is known as gravitational potential energy.

The potential energy increases by 3773 J

PE₂-PE₁=mg(h₂-h₁)

3773 J = 35.0 × 9.81 × (h₂-h₁)

(h₂-h₁) = 10.98

Case 2 ;

ΔPE =?

ΔPE=mg(h₂-h₁)

ΔPE=56.0 × 9.81 ×10.98

ΔPE=6031.97 J.

Hence, the increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.

To learn more about the gravitational potential energy, refer;

brainly.com/question/3884855#SPJ1

#SPJ1

8 0
2 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
Other questions:
  • What best describes the angle between a changing electric field and the electromagnetic wave produced by it? (2 points)
    8·2 answers
  • The word supersonic describes:
    5·2 answers
  • When I wave a charged golf tube at the front of the classroom with a frequency of two oscillations per second, I produce an elec
    9·1 answer
  • You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
    10·1 answer
  • Waves of energy in the electromagnetic spectrum travel through space and into the earths atmosphere. Which waves pass more crest
    12·1 answer
  • A student who has trouble hearing and must have a written copy of class lectures in order to participate in class is considered
    13·1 answer
  • Energy and work are measured in
    14·2 answers
  • When will the human population stop growing?
    14·2 answers
  • Julianne went to a restaurant to have a taste of her favorite fried chicken and spaghetti. She drove 2 km, east and then 8.5 km,
    11·1 answer
  • Gamma rays can cause cancer, but they can also be used to treat cancer. How
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!