Q=l^2 times R times t
Where Q - heat, I -current, R - resistance and t is time
If you increase I twice (and it's squared), than Q gonna went up 4 times (2 squared).
Choose last
Answer:
Ng = 0.893 N, Ne = 0.107N
Explanation:
Number of particles in Ground state = Ng
Number of particles in Excited state = Ne
Ne/Ng = e^{(-ΔE)/kt}
Since excited state is 3 fold degenerate
Ne/Ng =3 x e^{(-ΔE)/kt}
ΔE = Energy difference between ground and excited states = 0.25eV
T = 960 K
Constant k = 8.617 x 10^-5 eV/K
Ne/Ng = 3 x e^{-0.25/(8.617x10^-5) x 960}
= 3 x e^(-3.188645)
= 3 x 0.0412 = 0.1237 ≅ 0.12
Ne = 0.12 Ng
but Ne + Ng = N, where is N is total number of particles, substituting Ne into equation we get,
Ng(1 + 0.12) = N
Ng = N/1.12 = 0.893N
and Ne = 0.12 x 0.893 N = 0.107 N
Answer:
Coefficient of friction is
.
Work done is
.
Explanation:
Given:
Mass of the box (
):
kg
Force needed (
):
N
The formula to calculate the coefficient of friction between the floor and the box is given by

Here,
is the coefficient of friction and
is the acceleration due to gravity.
Substitute
N for
,
kg for
and
m/s² for
into equation (1) and solve to calculate the value of the coefficient of friction.

The formula to calculate the work done in overcoming the friction is given by

Here,
is the work done and
is the distance travelled.
Substitute
N for
and
for
into equation (2) to calculate the work done.

Answer:
The answer for this question is B water vapor
Explanation:
just trust me bro