Answer:
The power dissipated in a resistor is 117.54 watts.
Explanation:
Given that,
Peak voltage of the Ac generator, V = 230 V
Frequency, f = 210 Hz
Resistance, R = 225 ohms
We need to find the power dissipated in a resistor. The power generated is given by :


So,

So, the power dissipated in a resistor is 117.54 watts. Hence, this is the required solution.
Answer:
1.Radio waves from using your TV.
2. microwaves you are in satellites.
3.UV light waves come from sunlight
4.x ray waves used at the doctors office
5. infrared waves are in remote controls when sending signals.
I don't know if I can think of another 5 right now. but I hope this helps.
When Venus put in a different battery with higher voltage ... no matter
what other components were in the circuit ... the voltage across the
light bulb, and the current through it, both had to increase, and the
light bulb had to shine brighter than before.
Answer:

Explanation:
Given:
- Three identical charges q.
- Two charges on x - axis separated by distance a about origin
- One on y-axis
- All three charges are vertices
Find:
- Find an expression for the electric field at points on the y-axis above the uppermost charge.
- Show that the working reduces to point charge when y >> a.
Solution
- Take a variable distance y above the top most charge.
- Then compute the distance from charges on the axis to the variable distance y:

- Then compute the angle that Force makes with the y axis:
cos(Q) = sqrt(3)*a / 2*r
- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:
F_1,2 = 2*F_x*cos(Q)
- The total net force would be:
F_net = F_1,2 + kq / y^2
- Hence,

- Now for the limit y >>a:

- Insert limit i.e a/y = 0

Hence the Electric Field is off a point charge of magnitude 3q.