Answer: (a). E = 3.1656×10³⁴ √k/m
(b). f = 9.246 × 10¹² Hz
(c). Infrared region.
Explanation:
From Quantum Theory,
The energy of a proton is proportional to the frequency, from the equation;
E = hf
where E = energy in joules
h = planck's constant i.e. 6.626*10³⁴ Js
f = frequency
(a). from E = hf = 1 quanta
f = ω/2π
where ω = √k/m
consider 3 quanta of energy is lost;
E = 3hf = 3h/2π × √k/m
E = (3×6.626×10³⁴ / 2π) × √k/m
E = 3.1656×10³⁴ √k/m
(b). given from the question that K = 15 N/m
and mass M = 4 × 10⁻²⁶ kg
To get the frequency of the emitted photon,
Ephoton =hf = 3h/2π × √k/m (h cancels out)
f = 3h/2π × √k/m
f = 3h/2π × (√15 / 4 × 10⁻²⁶ )
f = 9.246 × 10¹² Hz
(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to 400 THz in the electromagnetic spectrum.
Answer:
The Estimated uncertainty in a nominal displacement of 2 cm at the design stage is plus or minus 0.0124cm
Explanation:
uncertainty in a nominal displacement
= (u^2 + v^2)^(1/2)
assume from specifications that k = 5v/5cm
= 1v/cm
u^2 = (0.0025*2)^(2) + (0.005*10*2)^2 + (0.0025*2)^2
= 0.01225v
v = 2v * 0.001
= 0.002v
uncertainty in a nominal displacement
= (u^2 + v^2)^(1/2)
= ((0.01225)^2 + (0.002)^2)^(1/2)
= 0.0124 cm
Therefore, The Estimated uncertainty in a nominal displacement of 2 cm at the design stage is plus or minus 0.0124cm
Answer:i think it is 35
Explanation:
i just guessed sorry im only in 5th grade
Answer:
i)ω=3600 rad/s
ii)V=7059.44 m/s
iii)F=1245.8 N
Explanation:
i)
We know that angular speed given as

We know that for one revolution
θ=2π
Given that time t= 2 hr
So
ω=θ/t
ω=2π/2 = π rad/hr
ω=3600 rad/s
ii)
Average speed V

Where M is the mass of earth.
R is the distance
G is the constant.
Now by putting the values


V=7059.44 m/s
iii)
We know that centripetal fore given as

Here given that m= 200 kg
R= 8000 km
so now by putting the values


F=1245.8 N
Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift