1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vanyuwa [196]
3 years ago
9

A piston-cylinder device contains 0.8 kg of steam at 300°C and 1 MPa. Steam is cooled at constant pressure until one-half of the

mass condenses. Determine (a) the final temperature; (b) the volume change; and (c) show the process on a T-? diagram with respect to saturation lines.

Engineering
1 answer:
liberstina [14]3 years ago
8 0

The answer & explanation for this question is given in the attachment below.

You might be interested in
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
3 years ago
Who works alongside and assists the engineers?
nika2105 [10]

Answer:

<u>Assistants</u><u> </u><u>works alongside and assists the engineers.</u>

5 0
2 years ago
How will the delay and active power per device change as you increase the doping density of both the N- and the P-MOSFET?
Murljashka [212]

Answer:

hello your question is incomplete attached below is the missing part of the  question

Consider an inverter operating a power supply voltage VDD. Assume that matched condition for this inverter. Make the necessary assumptions to get to an answer for the following questions.

answer : Nd ∝ rt

Explanation:

Determine how the delay and active power per device will change as the doping density of N- and P-MOSFET increases

Pactive ( active power ) = Efs * F

Pactive = \frac{q^2Nd^2*Xn^2}{6Eo} * f

also note that ; Pactive ∝ Nd2 (

tD = K . \frac{Vdd}{(Vdd - Vt )^2}  since K = constant

Hence : Nd ∝ rt

5 0
2 years ago
A pump with a power of 5 kW (pump power, and not useful pump power) and an efficiency of 72 percent is used to pump water from a
almond37 [142]

Answer:

a) The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump is 245.175 kilopascals.

Explanation:

a) Let suppose that pump works at steady state. The mass flow rate of the water (\dot m), in kilograms per second, is determined by following formula:

\dot m = \frac{\eta \cdot \dot W}{g\cdot H} (1)

Where:

\dot W - Pump power, in watts.

\eta - Efficiency, no unit.

g - Gravitational acceleration, in meters per square second.

H - Hydrostatic column, in meters.

If we know that \eta = 0.72, \dot W = 5000\,W, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the mass flow rate of water is:

\dot m = 14.683\,\frac{kg}{s}

The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump (\Delta P), in pascals, is determined by this equation:

\Delta P = \rho\cdot g\cdot H (2)

Where \rho is the density of water, in kilograms per cubic meter.

If we know that \rho = 1000\,\frac{kg}{m^{3}}, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the pressure difference is:

\Delta P = 245175\,Pa

The pressure difference across the pump is 245.175 kilopascals.

4 0
3 years ago
One of the arc welding process is most often used today for welding metal thicker than blank gauge
Otrada [13]

Answer:

I wish I know what this was sorry

3 0
2 years ago
Read 2 more answers
Other questions:
  • A liquid refrigerant (sg=1,2) is flowing at a weight flow rate of 20,9 N/h. Refrigerant flashes into a vapor and its specific we
    15·1 answer
  • 6. Staples are the most common item used to secure and support cables in residential wiring.​
    14·1 answer
  • In normal operation, a paper mill generates excess steam at 20 bar and 400◦C. It is planned to use this steam as the feed to a t
    14·1 answer
  • A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 m
    12·1 answer
  • Can you carry 1 m3 of liquid water? Why or why not? (provide the weight to support your answer)
    7·1 answer
  • A 40 mph wind is blowing past your house and speeds up as it flows up and over the roof. If the elevation effects are negligible
    14·1 answer
  • Omplete the following program: [0.5 X 4 = 2]
    11·1 answer
  • Which of the following is not a function of the suspension system?_____
    6·1 answer
  • The reversible and adiabatic process of a substance in a compressor begins with enthalpy equal to 1,350 kJ/kg, and ends with ent
    15·1 answer
  • What person at the construction worksite keeps workers safe from asbestos exposure?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!