Answer: mass
Explanation: the protons and neutrons make up the nucleus and nearly the entire mass of the atom
The solubility of NaCl in water will not be affected by an increase in pressure.
We know that the density of NaCl(s) in 2.165 g/cm³ at 25 °C and we want to know how will its solubility in water be affected when the pressure is increased.
<h3>What is solubility?</h3>
Solubility is the maximum mass of a solute that can be dissolved in 100 grams of solvent at a determined temperature.
The solubility of a solid, such as NaCl, in a liquid, is mainly affected by the temperature. However, since solids are not compressible, an increase in pressure will not affect its solubility.
On the other hand, the solubility of gases in water will increase with an increase in pressure, as stated by Henry's law.
The solubility of NaCl in water will not be affected by an increase in pressure.
Learn more about solubility here: brainly.com/question/11963573
Answer:
4180J
Explanation:
(25.0g)(4.184J/g°C)(75°C-35.0°C)
(25.0g)(40.0°C)(4.184J/g°C)
(1.00*10³g°C)(4.184J/g°C) = 4184J
use sig figs:
4180J
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.