1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mamont248 [21]
3 years ago
10

A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.

Physics
1 answer:
andreev551 [17]3 years ago
3 0

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}

Energy

\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})

m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}

Where:

m_{1}, m_{2} - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

v_{1,o}, v_{2,o} - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

v_{1}, v_{2} - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If m_{1} = 0.400\,kg, m_{2} = 0.900\,kg, v_{1,o} = +5.86\,\frac{m}{s}, v_{2,o} = 0\,\frac{m}{s}, the system of equation is simplified as follows:

2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}

13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}

Let is clear v_{1,f} in first equation:

0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}

v_{1,f} = 5.86-2.25\cdot v_{2,f}

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}

13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}

13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}

2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0

2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0

There are two solutions:

v_{2,f} = 0\,\frac{m}{s} or v_{2,f} = 3.606\,\frac{m}{s}

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: (v_{2,f} = 3.606\,\frac{m}{s})

v_{1,f} = 5.86-2.25\cdot (3.606)

v_{1,f} = -2.254\,\frac{m}{s}

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

You might be interested in
3. A pendulum with a 1.0-kg weight is set in motion from a position 0.04 m above the lowest point on the path of the weight.
gavmur [86]

Answer: K.E = 0.4 J

Explanation:

Given that:

M = 1.0 kg

h = 0.04 m

K.E = ?

According to conservative of energy

K.E = P.E

K.E = mgh

K.E = 1 × 9.81 × 0.04

K.E = 0.3924 Joule

The kinetic energy of the pendulum at the lowest point is 0.39 Joule

6 0
3 years ago
I need an answer for this plzz!!<br>number 2 <br>anybody can help ??
Anuta_ua [19.1K]
2.1) (i) W = mg downwards
(ii) N = R = Normal Reaction from the ground upwards
(iii) Fe = Force of engine towards the right
(iv) f = friction towards the left
(v) ma = Constant acceleration towards right.
2.2.1)
v = 25 m/s
u = 0 m/s
∆v = v - u = (25 - 0) m/s = 25 m/s
x = X
∆t = 50 s
a \:  =  \:  \frac{dv}{dt}  \:  =  \:  \frac{25 \:  \frac{m}{s} }{50 \: s} \:  =  \: 0.5 \:  \frac{m}{ {s}^{2} }
a = 0.5 m/s².
2.2.2)
F = ma = 900 kg × 0.5 m/s² = 450 N.
2.2.3)
2ax \:  =  \:  {v}^{2}  \:  -  \:  {u}^{2}
x \:  =  \:  \frac{ {v}^{2}  \:   -  \:  {u}^{2} }{2a}  \:  =  \:   \frac{{(25 \:  \frac{m}{s})}^{2}  \:  -  \:  {(0 \:  \frac{m}{s} )}^{2} }{2 \:  \times  \: 0.5 \:  \frac{m}{ {s}^{2} } } \:  =  \: 625 \: m
2.3)
Fe = f + ma
Fe - f = ma
For velocity to be constant,
a should be 0, or, a = 0,
Fe = f = 270 N
2.4.1)
v = 0
u = 25 m/s
a = -0.5 m/s²
v = u + at
t = -u/a = -(25)/(-0.5) = 50 s.
2.4.2)
x = -625/(2×(-0.5)) = 625 m.
8 0
3 years ago
. A huge pile of leaves was wrapped in a tarp in the middle of a lawn. The wrapped leaves weigh 580 newtons. The coefficient of
Rina8888 [55]

The force required is 319 N

Explanation:

The force of static friction is a force that acts an object on a surface, when this object is pushed by another force to put it in motion. The direction of the force of friction is opposite to the direction of the force of push, and its value increases as the force of push increases, up to a maximum value given by:

F_f = \mu W

where

\mu is the coefficient of friction

W is the weight of the object

Therefore, in order to put the object in motion, the force applied must be greater than this value.

For the pile of leaves in this problem, we have:

\mu = 0.55 (coefficient of friction)

W=580 N (weight of the leaves)

Substituting, we find:

F=(0.55)(580)=319 N

Learn more about force of friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

7 0
3 years ago
CAN SOME ONE HELP PLEASE :))))
Ede4ka [16]
Line c is at rest . line a is going in a positive direction . line b is going in a negative direction . line d is negative too
5 0
3 years ago
A ball of mass 2 kg is kept on the hill of height 3 km. Calculate the potential energy possessed by it ?
zysi [14]
We know that -

P.E=m*g*h

Where,

m = mass

g = acceleration due to gravity

h=height

First we convert height into meters.

1 km = 1000 meters

3 km = 1000 * 3 meters = 3000 meters

So, putting the values in the above formula, and by taking 'g' = 9.8 m/s², we get-

P.E.= 2*3000*9.8

P.E.= 58800 Joules

P.E.= 58.8 kJ

7 0
3 years ago
Read 2 more answers
Other questions:
  • Where is the resistor located on the diagram?
    7·2 answers
  • What is the term for movement in a particular direction
    13·1 answer
  • What happens to the frequency and pitch of sound if the object making the sound moves away from you ?
    5·1 answer
  • Which one of Newton's three laws of motion deals with action-reaction?
    10·1 answer
  • The cheetah is one of the fastest-accelerating animals, because it can go from rest to 16.2 m/s (about 36 mi/h) in 2.4 s. If its
    7·1 answer
  • The low areas created as a sound wave propagates are called rarefactions
    10·2 answers
  • Mr. Covault gave his students an assignment to design and conduct experiments that would allow them to find the relationship bet
    7·1 answer
  • What would the separation between two identical objects, one carrying 4 C of positive charge and the other 4 C of negative charg
    11·1 answer
  • Identifying the factors contributing to and acting as determinant factors of health disparities during the program theory and de
    12·1 answer
  • A .2.-kg soccer ball is rolling at 6.0 m/s toward a player. The player kicks the ball back and gives it a velocity of 14 m/s in
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!