Answer:
See Explanation
Explanation:
A decreasing temperature indicates that the dissolution process for the ammonium chloride requires input of energy from surroundings. That is, the process is essentially 2 parts => system (object of interest - NH₄Cl) and the surroundings (everything else - solvent - H₂O). The surroundings (water) solvent is showing a <u>measured</u> decrease in temperature or loss of energy (exothermic to surroundings) which flows into the system (NH₄Cl) and effects dissolution of salt into solution (endothermic to system).
Let A be the 80% solution and B be the 20% solution and P be the produce solution of 70%. Va and Vb and Vp are the volumes of A and B and P respectively.
Va + 60 = Vp
0.7Vp = 0.8Va + 0.2(60)
Substituting the value of Vp from the first equation:
0.7(Va + 60) = 0.8Va + 12
30 = 0.1Va
Va = 300 gallons
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>