Answer:
1384 kJ/mol
Explanation:
The heat absorbed by the calorimeter is equal to the heat released due to the combustion of the organic compound. C is the total heat capacity of the calorimeter and Δt is the change in temperature from intial to final:
Q = CΔt = (3576 J°C⁻¹)(30.589°C - 25.000°C) = 19986.264 J
Extra significant figures are kept to avoid round-off errors.
We then calculate the moles of the organic compound:
(0.6654 g)(mol/46.07) = 0.0144432 mol
We then calculate the heat released per mole and convert to the proper units. (The conversion between kJ and J is infinitely precise and is not involved in the consideration of significant figures)
(19986.264 J)(1kJ/1000J) / (0.0144432 mol) = 1384 kJ/mol
<h2>Answer:</h2>
Option (B):
The products can form reactants, and the reactants can form products.
<h3>Explanation:</h3><h3>Reversible reaction</h3>
A reversible reaction is a reaction where the reactants form products, which react together to give the reactants back.
aA + bB ⇄ cC + dD
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B.
Other options are wrong because off:
(A) Concentration changes with time equilibrium concentration and higher product concentration is also possible.
(C) They may be constant.
(D) Concentration changes with time equilibrium concentration and higher reactant concentration is also possible.
Answer:
Moles to Grams caco3
1 mole is equal to 1 moles CaCO3, or 100.0869 grams.
Ignore my writing answer is in pictute