Divide both sides by 5 , so 5(x + 5)/5 < 85/5 , which will give you <span>x + 5 < 17 , then minus 5 from both sides which will give you x < 12 . hope this helps !</span>
Answer:
Cost of a single Mucho beef burrito: 
Cost of a double Mucho beef burrito: 
Step-by-step explanation:
<h3>
The exercise is: "The Little Mexican restaurant sells only two kinds of beef burritos: Mucho beef and Mucho Mucho beef. Last week in the restaurant sold 16 orders of the single Mucho variety and 22 orders of the double Mucho. If the restaurant sold $231 Worth of beef burritos last week and the single neutral kind cost $1 Less than the double Mucho, how much did each type of burrito cost?"</h3>
Let be "x" the the cost in dollars of a single Mucho beef burrito and "y" the cost in dollars of a double Mucho burrito.
Set a system of equations:

To solve this system you can apply the Substitution Method:
1. Substitute the second equation into the first equation and solve for "y":

2. Substitute the value of "y" into the second equation and evaluate in order to find the value of "x":

Answer:
(-3, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -x + 1
2x + 3y = 6
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x + 3(-x + 1) = 6
- Distribute 3: 2x - 3x + 3 = 6
- Combine like terms: -x + 3 = 6
- Isolate <em>x</em> terms: -x = 3
- Isolate <em>x</em>: x = -3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define equation: y = -x + 1
- Substitute in <em>x</em>: y = -(-3) + 1
- Simplify: y = 3 + 1
- Add: y = 4
Answer:
h = b - 11.50
Step-by-step explanation:
Sharron(h) has 11.50 less than Rita(b)
h = b - 11.50