"The <span>ground is positively charged and the clouds are negatively charged " is the statement among the statements given in the question that </span><span>best explains the movement of electric current from the clouds to the ground during a lightning storm. The correct option among all the options that are given in the question is the third option or option "C". </span>
The best position for the person would be outside, under a clear sky, standing up. He should do it sometime between sunset and sunrise, from a day before until a day after the moment of Full Moon.
Answer:
<h2>10 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 20 × 0.5
We have the final answer as
<h3>10 kg.m/s</h3>
Hope this helps you
Answer:
The mass of the rule is 56.41 g
Explanation:
Given;
mass of the object suspended at zero mark, m₁ = 200 g
pivot of the uniform meter rule = 22 cm
Total length of meter rule = 100 cm
0 22cm 100cm
-------------------------Δ------------------------------------
↓ ↓
200g m₂
Apply principle of moment
(200 g)(22 cm - 0) = m₂(100 cm - 22 cm)
(200 g)(22 cm) = m₂(78 cm)
m₂ = (200 g)(22 cm) / (78 cm)
m₂ = 56.41 g
Therefore, the mass of the rule is 56.41 g
Frequency = (speed) / (wavelength)
Speed = 3 x 10⁸ m/s
Wavelength = 3 cm = 0.03 m
Frequency = (3 x 10⁸ m/s) / (0.03 m)
Frequency = (3 x 10⁸ / 0.03) (m / m-s)
Frequency = 1 x 10¹⁰ Hz (10 Gigahertz)