The cat has a speed. The truck and the bicycle both have velocity. We can't be sure of what the plane has.
Explanation:
The wavelength of green light is about 500 nanometers, or two thousandths of a millimeter. The typical wavelength of a microwave oven is about 12 centimeters, which is larger than a baseball.
Answer:
Ball A
Explanation:
Let the initial speed of the balls be u .
Angle of projection for ball A = 20°
Angle of projection for ball B = 75°
As we know that at highest point, the ball has only horizontal speed which always remains constant throughout the motion because the acceleration in horizontal direction is zero.
Speed of ball A at highest point = u Cos 20° = 0.94 u
Speed of ball B at highest point = u Cos 75° = 0.26 u
So, the ball A has bigger speed than B.
Answer:
Let us consider the case of a bus turning around a corner with a constant velocity, as the bus approaches the corner, the velocity at say point A is Va, and is tangential to the curve with direction pointing away from the curve. Also, the velocity at another point say point B is Vb and is also tangential to the curve with direction pointing away from the curve.<em> </em><em>Although the velocity at point A and the velocity at point B have the same magnitude, their directions are different (velocity is a vector quantity), and hence we have a change in velocity. By definition, an acceleration occurs when we have a change in velocity, so the bus experiences an acceleration at the corner whose direction is away from the center of the corner</em>.
The acceleration is not aligned with the direction of travel because<em> the change in velocity is at a tangent (directed away) to the direction of travel of the bus.</em>
Answer:
- 8.33 x 10⁻³ rad /s ( anticlockwise)
Explanation:
The rotational movement of beetle and turntable is caused by torque generated by internal forces , we can apply conservation of angular momentum.
That is ,
I₁ ω₁ = I₂ω₂ , ω₁ and ω₂ are angular velocity of beetle and turntable respectively.
ω₁ + ω₂ = .05 radian /s ( given )
Momentum of inertia of beetle I₁ = mass x (distance from axis)²
= 15 x 10⁻³ x R² ( R is radius of the turntable )
Momentum of inertia of turntable I₂ =1/2 mass x (distance from axis)²
= 75/2 x 10⁻³ x R² ( R is radius of the turntable )
I₁ ω₁ = I₂ω₂ ,
15 x 10⁻³ x R² x ( .05 - ω₂ ) = 75/2 x 10⁻³ x R² ω₂
15 x ( .05 - ω₂ ) = 75/2 x ω₂
.75 - 15ω₂ = 37.5ω₂
.75 = 52.5 ω₂
ω₂ = - 14.3 x 10⁻³ rad /s ( anticlockwise)