Each magnet has a north pole and a south pole. We know that, from having played with bar magnets in our childhood, that a magnet's north pole will repel another magnet's north pole and attract its south pole.
From this diagram it is easy to see that the two lower bar magnets not only repel each other, but they are quite attracted to each other since their north and south poles are close together.
Therefore the region between the lower two magnets has the least force of repulsion.
Answer:
Explanation:
Givens
m = 942
F = 6731
t = 21 seconds
vi = 0
vf = ?
Formula
F = m * (vf - vi ) / t
Solution
6731 = 942*(vf - 0)/21 Multiply both sides by 21
6731 * 21 = 942*vf
141351 = 942*vf Divide by 942
141351/942 = vf
vf = 151 m/s
Fresnel and Fraunhofer diffraction. Fresnel diffraction is produced when light from a point source meets an obstacle, the waves are spherical and the pattern observed is a fringed image of the object. Fraunhofer diffraction occurs with plane wave-fronts with the object effectively at infinity. The pattern is in a particular direction and is a fringed image of the source.
The kinetic energy before equals K after
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation:
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:
![f=\frac{340}{0.22} \\\\f=1545.454...](https://tex.z-dn.net/?f=f%3D%5Cfrac%7B340%7D%7B0.22%7D%20%5C%5C%5C%5Cf%3D1545.454...)
Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!