A = dv/dt = ak
ak = ( 0.0 m/s - 9.0 m/s ) / ( 3 s )
3m/s^2
Answer:
Energy (I need one more brainlist can i has?)
Explanation:
- Nuclear fusion occurs when two light nuclei fuse together into a heavier nucleus
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
In both processes, the mass of the products is always smaller than the mass of the initial nuclei. This means that part of the initial mass has been converted into something else: into energy, which is released in the process.
The amount of energy released in the process can be calculated by using the famous Einstein's equivalence:
where m is the difference between the mass of the product and the initial mass of the nuclei, and c is the speed of light.
The right answer for the question that is being asked and shown above is that: "The object's kinetic energy remains the same." If the net work done on an object is zero, you determine about the object's kinetic energy is that The object's kinetic energy remains the same.
Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
A string wound around a cylinder of 10 cm<span> radius has a 150 gram mass attached. When released, the mass accelerates at 50 </span>cm/s2<span>.</span>