Answer:
The First is an example of acceleration, the second is an example of velocity
Answer:
slow revolution and fast rotation
Explanation:
Answer:
+5.7 m/s
Explanation:
According to the law of conservation of momentum is that the momentum before the collision is equal to the momentum after the collision. In an equation form it would look like this:
M₁V₁+M₂V₂ = M₁V₁'+M₂V₂'
Where:
M₁ = mass of object 1 (kg)
V₁ = velocity of object 1 before the collision (m/s)
V₁' = Final velocity of object 1 after the collision (m/s)
M₂ = mass of object 2 (kg)
V₂ = velocity of object 2 before the collision (m/s)
V₂' = Final velocity of object 2 after the collision (m/s)
According to your problem you have the following given:
M₁ = 5 g = 0.005kg
V₁ = 3 m/s
V₁' = -5m/s (It bounced off so it is going the other direction)
M₂ = 6g = 0.006kg
V₂ = -1 m/s (It is coming from the opposite direction of the 3-ball)
V₂' = ?
So we plug in what we know and solve for what we don't know.

False. Since the forces are pulling in equal and opposite directions, the net force is 0.
The eclipse usually moves from west to east as the moon rotates the Earth from west to east and the Earth rotates towards the east as well.
This means that the shadow of the moon is also moving towards the east. That's why the eclipse moves towards the east (it follows the lunar shadow).