<u>Answer:</u>
<em>When we finish, the temperature would be 32.5℃</em>
<em></em>
<u>Explanation:</u>
Density of water = mass/volume
So,
Mass of water = Density × Volume


where
= Final T - Initial T
Q is the heat energy in calories
c is the specific heat capacity (for water 1.0 cal/(g℃))
m is the mass of water
plugging in the values


Final T = ∆T + Initial T
= 7.5℃ + 25℃ = 32.5℃ (Answer).
Answer:
0.50 moles of Cu
Explanation:
The balanced chemical equation for given synthetic reaction is,
2 Cu + S → Cu₂S
According to balance chemical equation,
1 mole of Cu₂S is produced by = 2 moles of Cu
So,
0.25 moles of Cu₂S will be produced by = X moles of Cu
Solving for X,
X = 0.25 mol × 2 mol / 1 mol
X = 0.50 moles of Cu
Hence, as the molar ratio of Cu to Cu₂S is 2:1 hence, to produce 0.25 moles of Cu₂S we will need 0.50 moles of Cu.
The motion of the molecules decreases.
<u>Explanation</u>:
- Gases are formed when the energy in a system overcomes the attractive forces between the molecules. The gases expand to fill the space they occupy. In this way, the gas molecules interact little. In the gaseous state, the molecules move very quickly. As the temperature decreases, the amount of movement of the individual molecules also decreases.
- The fast-moving particle slows down. When a particle speeds up, it has more kinetic energy. When a particle slows down, it has less kinetic energy. The particles in solid form are commonly connected through electrostatic powers. They don't get enough space to move around, therefore, their speed diminishes, they can't keep their standard speed like in the vaporous or fluid state.
I think The answer is 34.5l