You can use P1V1/T1 = P2V2/T2 but since pressure is constant is becomes V1/T1=V2/T2
V1=0.5 L
T1=203 K
T2=273 K
V2=unknown
0.5L/203 = V2/273
V2= 0.67 L so C
Hope this helps :)
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
The environment where rich,fertile soil would most likely be is a flood plain.
Hope this helps!
Can u plz mark me as brainliest? I really need it!
Answer:
Option B
Explanation:
Salt is a non-volatile solute and hence adding salt will increase the boiling point of water and hence reduce the vapor pressure. While on the other hand, adding more water will require more time to boil and hence produce vapor and thus the vapor pressure. Shaking will also not help in increasing the vapor pressure. Thus, only increasing the temperature of the water will create more vapors at a faster rate and hence increase the vapor pressure.
Thus, option B is the correct answer