<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
Balanced equation: 2Al+Fe2O3–> Al2O3+2Fe
Using mole calculations you can find that 10g of Al produces 24.3g of Fe under the conditions described
As we have the balanced reaction equation is:
N2O4 (g) ↔ 2NO2(g)
from this balanced equation, we can get the equilibrium constant expression
KC = [NO2]^2[N2O4]^1
from this expression, we can see that [NO2 ] is with 2 exponent of the stoichiometric and we can see that from the balanced equation as NO2
is 2NO2 in the balanced equation.
and [N2O4] is with 1 exponent of the stoichiometric and we can see that from the balanced equation as N2O4 is 1 N2O4 in the balanced equation.
∴ the correct exponent for N2O4 in the equilibrium constant expression is 1
A measure of thermal energy transferred between two different bodies at different temperatures would be the correct answer. So, the third option.
The answer is: the mass of oxygen is 16.95 grams.
The overall balanced photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂.
m(C₆H₁₂O₆) = 15.90 g; mass of glucose.
n(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 15.9 g ÷ 180.18 g/mol.
n(C₆H₁₂O₆) = 0.088 mol; amount of glucose.
From chemical reaction: n(C₆H₁₂O₆) : n(O₂) = 1 : 6.
n(O₂) = 6 · 0.088 mol.
n(O₂) = 0.53 mol; amount of oxygen.
m(O₂) = 0.53 mol · 32.00 g/mol.
m(O₂) = 16.95 g; mass of oxygen.