<h3>
Answer:</h3>
0.35 M
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial volume as 35.0 mL or 0.035 L
- Initial molarity as 12.0 M
- Final volume is 1.20 L
We are required to determine the final molarity of the solution;
- Dilution involves adding solvent to a solution to make it more dilute which reduces the concentration and increases the solvent while maintaining solute constant.
- Using dilution formula we can determine the final molarity.
M1V1 = M2V2
M2 = M1V1 ÷ V2
= (12.0 M × 0.035 L) ÷ 1.2 L
= 0.35 M
Thus, the final concentration of the solution is 0.35 M
Answer : attention swung away from renewable sources as the industrial revolution ... turbines have developed greatly in recent decades, solar photovoltaic technology is ... However, the variability of wind and solar power does not correspond with ... and 0.17 for solar PV, hence declared net capacity (DNC) is the figure
Explanation:
Answer:
27%
Explanation:
Hello,
The following information is missing, but I found it: "1.92 g of sodium sulfate is produced from the reaction of 4.9 g of sulfuric acid and 7.8 g of sodium hydroxide" so the undergoing chemical reaction is:

Now, to compute the percent yield, we must first establish the limiting reagent to subsequently determine the theoretical yield of sodium sulfate because the real (1.92g) is already given, thus, we consider the following procedure:

- The moles of sodium hydroxide that completely react with 0.05 moles of sulfuric acid are:

As this number is higher than the previously computed 0.05 moles of available sulfuric acid, one states that the sulfuric acid is the limiting reagent. Now, the theoretical grams of sodium sulfate are found via:

Finally, the percent yield turns out into:

%
Best regards.
The standard ambient temperature and pressure are
Temperature =298 K
Pressure = 1atm
The density of gas is 1.5328 g/L
density = mass of gas per unit volume
the ideal gas equation is
PV = nRT
P = pressure = 1 atm
V = volume
n = moles
R= gas constant = 0.0821 Latm/mol K
T = 298 K
moles = mass / molar mass
so we can write
n/V = density / molar mass
Putting values



Thus molar mass of gas is 37.50g/mol
Answer:
it's C
Explanation:
because it exhaled the carbon dioxide