Molality of the solution is defined as the number of moles of a substance dissolved divided by the mass of the solvent:
Molality = number of moles / solvent mass
From the concentration of 39% (by mass) of HCl in water, we construct the following reasoning:
in 100 g solution we have 39 g hydrochloric acid (HCl)
number of moles = mass / molecular weight
number of moles of HCl = 39 / 36.5 = 1.07 moles
solvent (water) mass = solution mass - hydrochloric acid mass
solvent (water) mass = 100 - 39 = 61 g
Now we can determine the molality:
molality = 1.07 moles / 61 g = 0.018
Answer:
i going to be aniston i would say take a gess
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
Keeping the masses of the objects unchanged, if the distance between the objects is halved, then the magnitude of gravitational force between them will become. Hope this helps please mark brainliest :)
Answer is: <span>Mutations sometimes improve the chances of survival for a plant.
</span>Mutations are very important because they change <span>variability in populations and in that way enable evolutionary change.
</span>There are three types of mutations:
1) good or advantageous mutations - <span> improve the chances of survival for a plant.
2) </span>bad or deleterious - decrease the chances of survival for a plant.
3) neutral - not affect he chances of survival for a plant.