Explanation:
The volumetric flow rate of water will be as follows.
q = 
= 0.0378 
Diameter =
= 0.2032 m
Relation between area and diameter is as follows.
A =
=
= 0.785 x 0.2032 x 0.2032
= 0.0324
Also, q = A × V
or, V = 
= 
= 1.166 m/s
As, viscosity of water = 1 cP =
Pa-s
Density of water = 1000
Therefore, we will calculate Reynolds number as follows.
Reynolds number =
=
= 236931.2
Hence, the flow will be turbulent in nature.
Thus, we can conclude that the Reynolds number is 236931.2 and flow is turbulent.
Answer:
Since its data sample can be quantified using fixed numerical parameters, quantitative observation yields more accurate results than qualitative observation and it is suitable for statistical investigations.
Explanation:
Answer:
Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).
Explanation:
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity.