Answer:
Explanation:autotroph and photosynthesis
sorry if I am wrong I am dumb. :( :(
I found it on google.
God bless, stay safe, and good luck! :) :)
Answer:On a sloped parking lot
Explanation:
We will take that molar mass of Pb(CO3)2 represents the total mass of all particles in this compound, ie it has value 100%.
M(Pb(CO3)2) = Ar(Pb) + 2xAr(C) + 6xAr(O) = 207.2 + 2x12 + 6x16= 327.2 g/mol
M(Pb) = 207.2 g/mol
From the date above we can set the following ratio:
M(Pb(CO3)2) : M(Pb) = 100% : x
327.2 : 207.2 = 100 :x
x = 63.33% of Pb there is in <span>Pb(Co3)2</span>
This question is missing the part that actually asks the question. The questions that are asked are as follows:
(a) How much of a 1.00 mg sample of americium remains after 4 day? Express your answer using 2 significant figures.
(b) How much of a 1.00 mg sample of iodine remains after 4 days? Express your answer using 3 significant figures.
We can use the equation for a first order rate law to find the amount of material remaining after 4 days:
[A] = [A]₀e^(-kt)
[A]₀ = initial amount
k = rate constant
t = time
[A] = amount of material at time, t.
(a) For americium we begin with 1.00 mg of sample and must convert time to units of years, as our rate constant, k, is in units of yr⁻¹.
4 days x 1 year/365 days = 0.0110
A = (1.00)e^((-1.6x10^-3)(0.0110))
A = 1.0 mg
The decay of americium is so slow that no noticeable change occurs over 4 days.
(b) We can simply plug in the information of iodine-125 and solve for A:
A = (1.00)e^(-0.011 x 4)
A = 0.957 mg
Iodine-125 decays at a much faster rate than americium and after 4 days there will be a significant loss of mass.
Answer:
its 1 not negative
the atom shown below was hydrogen, known as H.