The lever family and the inclined plane family.
Answer is: -601,2 kJ/mol
Chemical reaction: Mg(OH)₂ → MgO + H₂O.
ΔHrxn = 37,5 kJ/mol.
ΔHf(Mg(OH)₂) = <span>−924,5 kJ/mol.
</span>ΔHf(H₂O) = <span>−285,8 kJ/mol.
</span>ΔHrxn -enthalpy of reaction.
ΔHf - enthalpy of formation.
<span>ΔHrxn=∑productsΔHf−∑reactantsΔHf.
</span>ΔHf(MgO) = -924,5 kJ/mol - (-285,8 kJ/mol) + 37,5 kj/mol.
ΔHf(MgO) = -601,2 kJ/mol.
Okay so,
1) Translation- show the RNA strand attatching to a DNA strand with the complimentary base pairs. introns are spliced
2) mRNA leaves the cell and joins with a ribosome
3) Transcription - tRNA (clover shaped) reads each codon (triplets) which each code for an amino acid. The stop codons on the end tell the tRNA that the chain is finished
4) the sequence forms the primary structure (all peptide bonds) which determines the shape of the secondary (hyrdogen and peptide) and hence determines the shape of the tertiary structure of a protein (ionic, hydrogen, disulfide bridges and hydrophibic interactions)
Hope this helps :)
<h2>Answer:</h2>
Option A is correct
Adding an enzyme to decrease the activation energy of the reaction
<h2>Explanation:</h2>
Enzymes are the biological catalyst. They are proteins in nature. They are naturally found in humans,animals,micro-organisms,plants etc. They catalyze the chemical reactions by lowering activation energy and without being consumed in it.
Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.