Answer:
Ke = 34570.707
Explanation:
- H2(g) + Br2(g) → 2 HBr(g)
equilibrium constant (Ke):
⇒ Ke = [HBr]² / [Br2] [H2]
∴ [HBr] = (37.0 mol) / (2 L) = 18.5 mol/L
∴ [Br2] = (0.110 mol) / (2 L) = 0.055 mol/L
∴ [H2] = (0.360 mol) / (2 L) = 0.18 mol/L
⇒ Ke = (18.5 mol/L)² / (0.055 mol/L)(0.18 mol/L)
⇒ Ke = 34570.707
Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.
Answer: Option (d) is the correct answer.
Explanation:
As it is known that like dissolves like. So, water being a polar compound is able to dissolve only polar compounds.
Hence, a compound that is ionic or polar in nature will readily dissolve in water. Whereas non-polar compounds will be insoluble in water.
As
is a non-polar compound. Hence, it is insoluble in water.
On the other hand,
is a polar compound due to difference in electronegativity of chlorine and carbon atom there will be development of partial charges. Hence, there will be dipole-dipole forces existing between them.
Whereas
is an ionic compound and it will readily dissociate into ions when dissolved in water. Also, there will be ion-dipole interactions between sodium and nitrate ions.
Hence,
will readily dissolve in water.
Thus, we can conclude that the compounds correctly arranged in order of increasing solubility in water are
<
<
.
Packets of light energy are called photons.
Answer:
3 protons and also 3 electrons
Explanation:
z=p=e