Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Answer:
b.Beta
Explanation:
mass number remains constant while atomic number has been increased by 1 unit . beta is electron like element where its mass number is 0 and atomic number is -1.
The energy change if 84.0 g of CaO react with excess water is 98KJ of heat is released.
calculation
heat = number of moles x delta H
delta H = - 65.2 Kj/mol
first find the number of moles of CaO reacted
moles = mass/molar mass
the molar mass of CaO = 40 + 16= 56 g/mol
mass = 84 g
moles therefore = 84 g/56 g/mol =1.5 moles
Heat is therefore = 1.5 moles x -65.2 = - 97.8 Kj = -98 Kj
since sign is negative the energy is released
Answer:
Rock A because after physical weather and chemical weathering it more likely for Rock A to experience more chemical weathering.
Explanation: Weathering: This is a geological term used to describe the various processes and Activities involved in the breaking down of rocks either through physical,mechanical,chemical etc actions into smaller particles.
ROCK A WILL HAVE MORE CHEMICAL WEATHERING BECAUSE THE PHYSICAL WEATHERING MUST HAVE BROKEN DOWN THE PARTICLES FOR EASY WATER AND OTHER SUBSTANCE NEEDED FOR EASIER CHEMICAL REACTION OR WEATHERING.
Answer:
please the answer Is false