Answer: 1.98 g
Explanation:
To calculate the moles :
The balanced given equation is:
According to stoichiometry :
4 moles of
will produce = 2 moles of
Thus 0.22 moles of
will produce=
of
Mass of
Thus 1.98 g of water is produced along with 5.0 L of
at STP
Answer:
A strong base produces more ions in solution than a weak base.
Explanation:
Answer:
30.3 g
Explanation:
At STP, 1 mol of any gas will occupy 22.4 L.
With the information above in mind, we <u>calculate how many moles are there in 32.0 L</u>:
- 32.0 L ÷ 22.4 L/mol = 1.43 mol
Then we <u>calculate how many moles would there be in 16.6 L</u>:
- 16.6 L ÷ 22.4 L/mol = 0.741 mol
The <u>difference in moles is</u>:
- 1.43 mol - 0.741 mol = 0.689 mol
Finally we <u>convert 0.689 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 0.689 mol * 44 g/mol = 30.3 g
Answer:
115.891
Explanation:
Molarity is equal to moles/liters so to get moles we multiply molarity by liters, after this we multiply the moles by the total atomic weight of the compound to get grams
Answer:
1.84 L
Explanation:
Using the equation for reversible work:

Where:
W is the work done (J) = -287 J.
Since the gas did work, therefore W is negative.
P is the pressure in atm = 1.90 atm.
However, work done is in joules and pressure is in atm. We can use the values of universal gas constant as a convenient conversion unit. R = 8.314 J/(mol*K); R = 0.0821 (L*atm)/(mol*K)
Therefore, the conversion unit is 0.0821/8.314 = 0.00987 (L*atm)/J
is the initial volume = 0.350 L
is the final volume = ?
Thus:
(-287 J)*0.00987 (L*atm)/J = -1.9 atm*(
- 0.350) L
= [(287*0.00987)+(1.9*0.350)]/1.9 = (2.833+0.665)/1.9 =1.84 L