Answer:
−
1
2
+
Step-by-step explanation:
3(x)=6
3(2)=6
which says 6=6
Answer:
welpp
Step-by-step explanation:
Answer:
(The image is not provided, so i draw an idea of how i supposed that the problem is, the image is at the bottom)
Ok, we have a rectangle of length x by r.
At the extremes of length r, we add two semicircles.
So the perimeter will be equal to:
Two times x, plus the perimeter of the two semicircles (that can be thought as only one circle).
The radius of the semicircles is r, and the perimeter of a circle is:
C = 2*pi*r
where pi = 3.14
Then the perimeter of the track is:
P = 2*x + 2*pi*r.
b) now we want to solve this for x, this means isolating x in one side of the equation.
P - 2*pi*r = 2*x
P/2 - pi*r = x.
c) now we have:
P = 660ft
r = 50ft
then we can replace the values and find x.
x = 660ft/2 - 3.14*50ft = 173ft
Answer/Step-by-step explanation:
✔️Find EC using Cosine Rule:
EC² = DC² + DE² - 2*DC*DE*cos(D)
EC² = 27² + 14² - 2*27*14*cos(32)
EC² = 925 - 756*cos(32)
EC² = 283.875639
EC = √283.875639
EC = 16.85 cm
✔️Find the area of ∆DCE:
Area = ½*14*27*sin(32)
Area of ∆DCE = 100.15 cm²
✔️Since ∆DCE and ∆ABE are congruent, therefore,
Area of ∆ABE = 100.15 cm²
✔️Find the area of the sector:
Area of sector = 105/360*π*16.85²
Area = 260.16 cm² (nearest tenth)
✔️Therefore,
Area of the logo = 100.15 + 100.15 + 260.16 = 460.46 ≈ 460 cm² (to 2 S.F)