Impulse = Ft = (m)(delta v)
delta v = change in velocity = velocity final - velocity initial.
= -22m/s - +18m/s = -40m/s.
mdeltav = (0.40kg)(-40m/s) = -16kgm/s or -16Ns.
B Quartz. Will be your answer of thia
Answer:
Spiral galaxies consist of a flat, rotating disk of stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.
Elliptical galaxies have smooth, featureless light-profiles and range in shape from nearly spherical to highly flattened, and in size from hundreds of millions to over one trillion stars. In the outer regions, many stars are grouped into globular clusters. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity They are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure. Collectively they are thought to make up about a quarter of all galaxies.
irregular galaxies were once spiral or elliptical galaxies but were deformed by gravitational action. they are shapeless.
The angle measured counterclockwise from the positive x-axis is θ = 50.4°
<h3>
How to get the angle correspondent to a vector?</h3>
Here we know that the vector is:
V = < -177 cm, -214 cm>
To get the correspondent angle for this vector, we can think that this is the hypotenuse of a right triangle, such that the y-component and x-component are the cathetus.
Then, to get the angle (measured counterclockwise from the positive x-axis) is given by:
Tan(θ) = (opposite cathetus)/(adjacent cathetus)
Tan(θ) = (-214cm)/(-177 cm)
Using the inverse tangent function we get:
Atan(Tan(θ)) = Atan((-214cm)/(-177 cm))
θ = 50.4°
So the angle is 50.4°
If you want to learn more about vectors, you can read:
brainly.com/question/3184914
The trombone is a wind musical instrument and as all musical instruments can produce a standing (or stationary) wave.
This kind of waves is the result of the composition of two waves that produces a pattern that looks like it is not moving but just vibrating. Some points of the wave look like they are not even vibrating, they just stand still, and they are called nodes. Other points of the wave vibrate from the maximum positive value to the maximum negative value and are called antinodes.