Answer:
This link was diagram
Explanation:
https://doubtnut.app.link/FnsNC80Dccb
To be able to determine the original speed of the car, we use kinematic equations to relate the acceleration, distance and the original speed of the car moving.
First, we manipulate the one of the kinematic equations
v^2 = v0^2 + 2 (a) (x) where v = 0 since the car stopped
Writing the equation in such a way that the initial velocity or v0 is written on one side of the equation,
<span>we get v0 = sqrt (2(a)(x))
Substituting the known values,
v0 = sqrt(2(3.50)(30.0))
v0 = 14.49 m/s
</span>
Therefore, before stopping the car the original speed of the car would be 14.49 m/s
Answer:
9 meters
Explanation:
Given:
Mass of Avi is, 
Spring constant is, 
Compression in the spring is, 
Let the maximum height reached be 'h' m.
Now, as the spring is compressed, there is elastic potential energy stored in the spring. This elastic potential energy is transferred to Avi in the form of gravitational potential energy.
So, by law of conservation of energy, decrease in elastic potential energy is equal to increase in gravitational potential energy.
Decrease in elastic potential energy is given as:

Now, increase in gravitational potential energy is given as:

Now, increase in gravitational potential energy is equal decrease in elastic potential energy. Therefore,

Therefore, Avi will reach a maximum height of 9 meters.
Answer:
1,200 watts
Explanation:
1 watt = 1 Joule (J) of work / second
So, 3600 Joules of work / 3 seconds is:
3600 J / 3 seconds = 1,200 watts
Carbohydrates <span>carbohydrates are repeating sugar units. They are the only ones that are repeating sugar units</span>