Answer:
1.31498 kg
0.72050 s
0.72050 s
Explanation:
m = Mass of block
g = Acceleration due to gravity = 9.81 m/s²
k = Spring constant = 100 N/M
x = Displacement = 0.129 m
The force balance is

The mass of the block is 1.31498 kg
Time period is given by

The period of oscillations is 0.72050 s
The time period does not depend on the acceleration due to gravity. It varies with the mass and the spring constant.
Hence, the time period would be the same
Well, if the bag is moving across the floor at a constant velocity. Then I would assume that the Fnet force is equal to 0, and thus the value of acceleration would also be equal to 0.
If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
Answer: angular acceleration = 
Given:
Distance from center of axis = 1.6 m
Time taken to complete one revolution = 4.7 sec
Therefore, we can evaluate the angular acceleration using the following formula:



= 
We use the formula V=IR where I is current, v is voltage, and R is resistance. This is V=(3)(10) which is 30 Volts, answer choice (c)