Answer:
if it were to be digital then you would be able to carry it around where ever and look at it to remind you of the memories, however it probably wouldnt last as long as the physical one. eg if you phone breaks there is a chance to restore the photo but you would had to have backed it up beforehand.
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.
W = F * s
Here, F = 50 N
s = 15 m
Substitute their values,
W = 50 * 15
W = 750 J
In short, Your Answer would be 750 Joules
Hope this helps!
Answer:
229,098.96 J
Explanation:
mass of water (m) = 456 g = 0.456 kg
initial temperature (T) = 25 degrees
final temperature (t) = - 10 degrees
specific heat of ice = 2090 J/kg
latent heat of fusion =33.5 x 10^(4) J/kg
specific heat of water = 4186 J/kg
for the water to be converted to ice it must undergo three stages:
- the water must cool from 25 degrees to 0 degrees, and the heat removed would be Q = m x specific heat of water x change in temp
Q = 0.456 x 4186 x (25 - (-10)) = 66808.56 J
- the water must freeze at 0 degrees, and the heat removed would be Q = m x specific heat of fusion x change in temp
Q = 0.456 x 33.5 x 10^(4) = 152760 J
- the water must cool further to -10 degrees from 0 degrees, and the heat removed would be Q = m x specific heat of ice x change in temp
Q = 0.456 x 2090 x (0 - (-10)) = 9530.4 J
The quantity of heat removed from all three stages would be added to get the total heat removed.
Q total = 66,808.56 + 152,760 + 9,530.4 = 229,098.96 J